Plant Molecular Biology

, Volume 76, Issue 1–2, pp 35–45 | Cite as

miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions

  • Jae-Hoon Jung
  • Pil Joon Seo
  • Seok Ki Kang
  • Chung-Mo Park
Article

Abstract

In plants, developmental timing is coordinately regulated by a complex signaling network that integrates diverse intrinsic and extrinsic signals. miR172 promotes photoperiodic flowering. It also regulates adult development along with miR156, although the molecular mechanisms underlying this regulation are not fully understood. Here, we demonstrate that miR172 modulates the developmental transitions by regulating the expression of a subset of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are also regulated by miR156. The SPL3/4/5 genes were upregulated in the miR172-overproducing plants (35S:172) and its target gene mutants that exhibit early flowering. In contrast, expression of other SPL genes was not altered to a discernible level. Kinetic measurements of miR172 abundance in the transgenic plants expressing the MIR156a gene driven by a β-estradiol-inducible promoter revealed that expressions of miR172 and miR156 are not directly interrelated. Instead, the 2 miRNA signals are integrated at the SPL3/4/5 genes. Notably, analysis of developmental patterns in the 156 × 172 plants overproducing both miR172 and miR156 showed that whereas vegetative phase change was delayed as observed in the miR156-overproducing plants (35S:156), flowering initiation was accelerated as observed in the 35S:172 transgenic plants. Together, these observations indicate that although miR172 and miR156 play distinct roles in the timing of developmental phase transitions, there is a signaling crosstalk mediated by the SPL3/4/5 genes.

Keywords

Developmental timing Flowering initiation miR156 miR172 SPL3/4/5 

Abbreviations

AP2

APETALA 2

Cg1

Corngrass1

FT

FLOWERING LOCUS T

Gl15

Glossy15

GUS

β-Glucuronidase

LD

Long day

miRNA

MicroRNA

qRT-PCR

Quantitative real-time RT-PCR

RT-PCR

Reverse transcription-PCR

SD

Short day

SMZ

SCHLAFMÜTZE

SNZ

SCHNARCHZAPFEN

SOC1

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1

SPL3/4/5

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5

TOE1/2

TARGET OF EAT 1/2

Supplementary material

11103_2011_9759_MOESM1_ESM.pdf (357 kb)
Supplementary material 1 (PDF 357 kb)

References

  1. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedCrossRefGoogle Scholar
  2. Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664PubMedCrossRefGoogle Scholar
  3. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504PubMedCrossRefGoogle Scholar
  4. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510PubMedCrossRefGoogle Scholar
  5. Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377PubMedCrossRefGoogle Scholar
  6. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  7. Chen J, Li WX, Xie D, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA silencing–mediated defense but upregulates the role of microRNA in host Gene expression. Plant Cell 16:1302–1313PubMedCrossRefGoogle Scholar
  8. Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549PubMedCrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  10. Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693PubMedCrossRefGoogle Scholar
  11. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618PubMedCrossRefGoogle Scholar
  12. Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739PubMedCrossRefGoogle Scholar
  13. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748PubMedCrossRefGoogle Scholar
  14. Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94PubMedCrossRefGoogle Scholar
  15. Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM (2008) HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. Plant Cell 20:920–933PubMedCrossRefGoogle Scholar
  16. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102:9412–9417PubMedCrossRefGoogle Scholar
  17. Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731–740PubMedCrossRefGoogle Scholar
  18. Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLOS Biol 7:e1000148PubMedCrossRefGoogle Scholar
  19. Moose SP, Sisco PH (1996) glossy15, an APETELA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027PubMedCrossRefGoogle Scholar
  20. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379PubMedCrossRefGoogle Scholar
  21. Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336PubMedCrossRefGoogle Scholar
  22. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012PubMedCrossRefGoogle Scholar
  23. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527PubMedCrossRefGoogle Scholar
  24. Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195PubMedCrossRefGoogle Scholar
  25. Scott DB, Jin W, Ledford HK, Jung HS, Honma MA (1999) EAF1 regulates vegetative-phase change and flowering time in Arabidopsis. Plant Physiol 120:675–684PubMedCrossRefGoogle Scholar
  26. Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645–654PubMedGoogle Scholar
  27. Telfer A, Poethig RS (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125:1889–1898PubMedGoogle Scholar
  28. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crété P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79PubMedCrossRefGoogle Scholar
  29. Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243PubMedCrossRefGoogle Scholar
  30. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749PubMedCrossRefGoogle Scholar
  31. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547PubMedCrossRefGoogle Scholar
  32. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759PubMedCrossRefGoogle Scholar
  33. Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jae-Hoon Jung
    • 1
  • Pil Joon Seo
    • 1
  • Seok Ki Kang
    • 1
  • Chung-Mo Park
    • 1
    • 2
  1. 1.Department of ChemistrySeoul National UniversitySeoulKorea
  2. 2.Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea

Personalised recommendations