Advertisement

Plant Molecular Biology

, Volume 76, Issue 1–2, pp 1–18 | Cite as

Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation

  • Nir Dai
  • Shahar Cohen
  • Vitaly Portnoy
  • Galil Tzuri
  • Rotem Harel-Beja
  • Maya Pompan-Lotan
  • Nir Carmi
  • Genfa Zhang
  • Alex Diber
  • Sarah Pollock
  • Hagai Karchi
  • Yelena Yeselson
  • Marina Petreikov
  • Shmuel Shen
  • Uzi Sahar
  • Ran Hovav
  • Efraim Lewinsohn
  • Yakov Tadmor
  • David Granot
  • Ron Ophir
  • Amir Sherman
  • Zhangjun Fei
  • Jim Giovannoni
  • Yosef Burger
  • Nurit Katzir
  • Arthur A. SchafferEmail author
Article

Abstract

The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.

Keywords

Cucumis melo Sugar metabolism Sucrose 454 pyrosequencing Transcriptomics Metabolic pathway 

Notes

Acknowledgments

We gratefully acknowledge financial support from of the Chief Scientist, Ministry of Agriculture; The Israel Bio-Tov Consortium and Magnet program, Israeli Ministry of Industry, Trade and Labor; Binational Agriculture Research and Development (BARD) Grant IS-2270-94 and IS-3877-06; Israel Science Foundation Grant No. 386/06; and EU project Food-2005 MetaPhor. This paper is journal series #172-10 of the Agricultural Research Organization.

Supplementary material

11103_2011_9757_MOESM1_ESM.doc (456 kb)
Supplementary material 1 (DOC 456 kb)
11103_2011_9757_MOESM2_ESM.txt (52 kb)
Supplementary material 2 (TXT 52 kb)
11103_2011_9757_MOESM3_ESM.gz (139 kb)
Supplementary material 3 (GZ 140 kb)

References

  1. Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399PubMedCrossRefGoogle Scholar
  2. Appeldoorn NJG, de Bruijn SM, Koot-Gronsveld EAM, Visser RGF, Vreugdenhil D, van der Plas LHW (1997) Developmental changes of enzymes involved in the conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta 202:220–226CrossRefGoogle Scholar
  3. Ayre BG, Blair JE, Turgeon R (2003) Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol 133:1229–1239PubMedCrossRefGoogle Scholar
  4. Barber C, Rösti J, Rawat A, Findlay K, Roberts K, Seifert GJ (2006) Distinct properties of the five UDP-d-glucose/UDP-d-galactose 4-epimerase isoforms of Arabidopsis thaliana. J Biol Chem 281:17276–17285PubMedCrossRefGoogle Scholar
  5. Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828PubMedCrossRefGoogle Scholar
  6. Burger Y, Schaffer AA (2007) The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis. J Amer Soc Hort Sci 132:704–712Google Scholar
  7. Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, Schaffer AA (2009) Genetic diversity of Cucumis melo. Hort Rev 36:165–198CrossRefGoogle Scholar
  8. Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106PubMedCrossRefGoogle Scholar
  9. Caspar T, Huber SC, Somerville C (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79:11–17PubMedCrossRefGoogle Scholar
  10. Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 life sciences technology. BMC Genomics 27:272CrossRefGoogle Scholar
  11. Chrost B, Schmitz K (1997) Changes in soluble sugars and activity of α-galactosidases and acid invertase during muskmelon fruit development. J Plant Physiol 151:41–50Google Scholar
  12. Claeyssen E, Rivoal J (2007) Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68:709–731PubMedCrossRefGoogle Scholar
  13. Dai N, Petreikov M, Portnoy V, Katzir N, Pharr DM, Schaffer AA (2006) Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiol 142:294–304PubMedCrossRefGoogle Scholar
  14. Damari-Weissler H, Kandel-Kfir M, Gidoni D, Mett A, Belausov E, Granot D (2006) Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta 224:1495–1502PubMedCrossRefGoogle Scholar
  15. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469PubMedCrossRefGoogle Scholar
  16. Duncan KA, Hardin SC, Huber SC (2006) The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol 47:959–971PubMedCrossRefGoogle Scholar
  17. Fernie AR, Roessner U, Trethewey RN, Willmitzer L (2001) The contribution of plastidial PGM to the control of starch synthesis within the potato tuber. Planta 213:418–426PubMedCrossRefGoogle Scholar
  18. Feusi MES, Burton JD, Williamson JD, Pharr DM (1999) Galactosyl-sucrose metabolism and UDP-galactose pyrophosphorylase from Cucumis melo L. fruit. Physiol Plant 106:9–16CrossRefGoogle Scholar
  19. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789PubMedCrossRefGoogle Scholar
  20. Gao Z, Schaffer AA (1999) A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119:979–988PubMedCrossRefGoogle Scholar
  21. Gao Z, Petreikov M, Zamski E, Schaffer AA (1999) Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiol Plant 106:1–8CrossRefGoogle Scholar
  22. Gao Z, Petreikov M, Burger Y, Shen S, Schaffer AA (2004) Stachyose to sucrose metabolism in sweet melon (Cucumis melo) fruit mesocarp during the sucrose accumulation stage. In: Lebeda Paris (ed) Progress in cucurbit genetics and breeding research. Palacky University, Chech Republic, pp 471–476Google Scholar
  23. Glasziou KT, Gayler KR (1972) Storage of sugars in stalks of sugar cane. Bot Rev 38:471–488CrossRefGoogle Scholar
  24. Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in the establishing and maintaining sink metabolism. Plant Physiol 115:273–282PubMedCrossRefGoogle Scholar
  25. Goetz M, Roitsch T (1999) The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. Plant J 20:707–711PubMedCrossRefGoogle Scholar
  26. Granot D (2008) Putting plant hexokinases in their proper place. Phytochemistry 69:2649–2654PubMedCrossRefGoogle Scholar
  27. Gross KC, Pharr DM (1982) A potential pathway for galactose metabolism in Cucumis sativus L., a stachyose transporting species. Plant Physiol 69:117–121PubMedCrossRefGoogle Scholar
  28. Grusak MA, Beebe DU, Turgeon R (1996) Phloem loading. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker, NY, pp 209–227Google Scholar
  29. Hanson KR, McHale NA (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol 88:838–844PubMedCrossRefGoogle Scholar
  30. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger Y, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Gen 121:511–533Google Scholar
  31. Harrison CJ, Hedley CL, Wang TL (1998) Evidence that the rug3 locus of pea encodes plastidial phosphoglucomutase confirms that the imported substrate for starch synthesis in pea amyloplasts is glucose-6-phospkate. Plant J 13:753–762CrossRefGoogle Scholar
  32. Ho LC (1996) Tomato. In: Zamski E, Shaffer AA (eds) Photoassimilate distribution in plants and crops, source-sink relationships. Marcel Dekker, NY, pp 709–728Google Scholar
  33. Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447PubMedCrossRefGoogle Scholar
  34. Hu GK, Madore SJ, Moldover B, Jatkoe T, Balaban D, Thomas J, Wang Y (2001) Predicting splice variant from DNA chip expression data. Genome Res 11:1237–1245PubMedCrossRefGoogle Scholar
  35. Hubbard NL, Pharr DM, Huber SC (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534PubMedCrossRefGoogle Scholar
  36. Iwatsubo T, Nakagawa H, Ogura N, Hirabayashi T, Sato T (1992) Acid invertase of melon fruits: immunochemical detection of acid invertases. Plant Cell Physiol 33:1127–1133Google Scholar
  37. Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634PubMedCrossRefGoogle Scholar
  38. Jin Y, Ni DA, Ruan Y (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089PubMedCrossRefGoogle Scholar
  39. Kandel-Kfir M, Damari-Weissler H, German MA, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta 224:1341–1352PubMedCrossRefGoogle Scholar
  40. Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD (2008) Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411–425PubMedCrossRefGoogle Scholar
  41. Kato T, Kubota S (1978) Properties of invertase in sugar storage of citrus fruit and changes in their actinities during maturation. Physiol Plantarum 42:67–72CrossRefGoogle Scholar
  42. Keller F, Pharr DM (1996) Metabolism of carbohydrates in sink and sources: galactosyl-sucrose oligosaccharide. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, NY, pp 157–183Google Scholar
  43. Komatsu A, Takanokura Y, Omura M, Akihama T (1996) Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc.). Mol Gen Genet 252:346–351PubMedGoogle Scholar
  44. Komatsu A, Takanokura Y, Moriguchi T, Omura M, Akihama T (1999) Differential expressión of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiu Marc.). Plant Sci 140:169–178CrossRefGoogle Scholar
  45. Komatsu A, Takanokura Y, Moriguchi T, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71PubMedCrossRefGoogle Scholar
  46. Kortstee AJ, Appeldoorn NJG, Oortwijn MEP, Visser RGF (2007) Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 226:929–939PubMedCrossRefGoogle Scholar
  47. Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246PubMedCrossRefGoogle Scholar
  48. Langenkämper G, Fung RW, Newcomb RD, Atkinson RG, Gardner RC, MacRae EA (2002) Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol 54:322–332PubMedGoogle Scholar
  49. Lester GE, Arias LS, Gomez-Lim M (2001) Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. J Am Soc Hort Sci 126:33–36Google Scholar
  50. Lutfiyya LL, Xu N, D’Ordine RL, Morrell JA, Miller PW, Duff SM (2007) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J Plant Physiol 164:923–933PubMedCrossRefGoogle Scholar
  51. McCollum TG, Huber DJ, Cantliffe DJ (1988) Soluble sugar accumulation and activity of related enzymes during muskmelon fruit development. J Am Soc Hort Sci 113:399–403Google Scholar
  52. Miron D, Schaffer AA (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol 95:623–627Google Scholar
  53. Mitchell DE, Gadus MV, Madore MA (1992) Patterns of assimilate production and translocation in maskmelon (Cucumis melo L.). I. Diurnal patterns. Plant Physiol 99:959–965PubMedCrossRefGoogle Scholar
  54. Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193–1203PubMedCrossRefGoogle Scholar
  55. Nonis A, Ruperti B, Pierasco A, Canaguier A, Adam-Blondon AF, Di Gaspero G, Vizzotto G (2008) Neutral invertases in grapevine and comparative analysis with Arabidopsis, poplar and rice. Planta 229:129–142PubMedCrossRefGoogle Scholar
  56. Núñez JG, Kronenberger J, Wuillème S, Lepiniec L, Rochat C (2008) Study of AtSUS2 localization in seeds reveals a strong association with plastids. Plant Cell Physiol 49:1621–1626PubMedCrossRefGoogle Scholar
  57. Nuñez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55PubMedCrossRefGoogle Scholar
  58. Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447PubMedCrossRefGoogle Scholar
  59. Petreikov M, Dai N, Granot D, Schaffer AA (2001) Characterization of native and yeast-expressed tomato fruit fructokinase enzymes. Phytochemistry 58:841–847PubMedCrossRefGoogle Scholar
  60. Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer AA (2006) Temporally extended gene expression of the ADPglucose pyrophosphorylase large subunit (AGPase-LS1) leads to increased enzyme activity in developing tomato fruit. Planta 224:1465–1479PubMedCrossRefGoogle Scholar
  61. Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification on cultivars of melon. Acta Hort 510:29–36Google Scholar
  62. Portnoy V, Diber A, Pollock S, Karchi H, Lev S, Tzuri G, Rotem Harel-Beja, Forer R, Portnoy VH, Lewinsohn E, Tadmor Y, Burger J, Schaffer AA, Katzir N (2011) Use of non-normalized, non-amplified cDNA for 454-based RNA-Seq of fleshy melon fruit. The Plant Genome. doi:  10.3835/plantgenome2010.11.0026
  63. Pressey R (1966) Separation and properties of potato invertase and invertase inhibitor. Arch Biochem Biophys 113:667–674PubMedCrossRefGoogle Scholar
  64. Ranwala AP, Iwanami SS, Masuda H (1991) Acid and neutral invertases in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit. Plant Physiol 96:881–886PubMedCrossRefGoogle Scholar
  65. Rausch T, Greiner S (2004) Plant protein inhibitors of invertases. Biochim Biophys Acta 1696:253–261PubMedGoogle Scholar
  66. Ricardo CPP, ap Rees T (1970) Invertase activity during the development of carrot roots. Phytochemistry 9:239–247CrossRefGoogle Scholar
  67. Rosa JT (1928) Changes in composition during ripening and storage of melons. Hilgardia 3:421–443Google Scholar
  68. Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ (2007) UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis. Plant Cell 19:1565–1579PubMedCrossRefGoogle Scholar
  69. Ruan Y-L, Patrick JW (1995) The cellular pathway of post-phloem sugar transport in developing tomato fruit. Planta 196:434–444CrossRefGoogle Scholar
  70. Schaffer AA, Petreikov M (1997) Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol 113:739–746PubMedGoogle Scholar
  71. Schaffer AA, Aloni B, Fogelman E (1987) Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry 26:1883–1887CrossRefGoogle Scholar
  72. Schaffer AA, Pharr DM, Madore MA (1996) Cucurbits. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, NY, pp 729–757Google Scholar
  73. Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284PubMedCrossRefGoogle Scholar
  74. Stepansky A, Kovalski I, Schaffer AA, Perl-Ttreves R (1999) Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Res Crop Evol 45:53–62CrossRefGoogle Scholar
  75. Subbaiah CC, Palaniappan A, Duncan K, Rhoads DM, Huber SC, Sachs MM (2006) Mitochondrial localization and putative signaling function of sucrose synthase in maize. J Biol Chem 281:15625–15635PubMedCrossRefGoogle Scholar
  76. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63:411–423CrossRefGoogle Scholar
  77. Vargas WA, Pontis HG, Salerno GL (2008) New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 227:795–807PubMedCrossRefGoogle Scholar
  78. Wang F, Sanz A, Brenner ML, Smith A (1993) Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol 101:321–327PubMedGoogle Scholar
  79. Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42PubMedCrossRefGoogle Scholar
  80. Xie H, Zhu WY, Wasserman A, Grebinskiy V, Olson A, Mintz L (2002) Computational analysis of alternative splicing using EST tissue information. Genomics 80:326–330PubMedCrossRefGoogle Scholar
  81. Yamaguchi M, Hughes DL, Yabumoto K, Jennings WC (1977) Quality of cantaloupes: variability and attributes. Scientia Hort 6:59–70CrossRefGoogle Scholar
  82. Yu TS, Lue WL, Wang SM, Chen J (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123:319–326PubMedCrossRefGoogle Scholar
  83. Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, Zheng C (2008) Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. J Exp Bot 59:2969–2977PubMedCrossRefGoogle Scholar
  84. Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of lin5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150:1204–1218PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nir Dai
    • 1
  • Shahar Cohen
    • 1
  • Vitaly Portnoy
    • 2
  • Galil Tzuri
    • 2
  • Rotem Harel-Beja
    • 2
  • Maya Pompan-Lotan
    • 2
  • Nir Carmi
    • 1
  • Genfa Zhang
    • 1
    • 5
  • Alex Diber
    • 4
  • Sarah Pollock
    • 4
  • Hagai Karchi
    • 4
  • Yelena Yeselson
    • 1
  • Marina Petreikov
    • 1
  • Shmuel Shen
    • 1
  • Uzi Sahar
    • 2
  • Ran Hovav
    • 1
  • Efraim Lewinsohn
    • 2
  • Yakov Tadmor
    • 2
  • David Granot
    • 1
  • Ron Ophir
    • 1
  • Amir Sherman
    • 1
  • Zhangjun Fei
    • 3
  • Jim Giovannoni
    • 3
  • Yosef Burger
    • 2
  • Nurit Katzir
    • 2
  • Arthur A. Schaffer
    • 1
    • 6
    Email author
  1. 1.Institute of Plant ScienceAgricultural Research OrganizationBet DaganIsrael
  2. 2.Department of Vegetable Research, Agricultural Research OrganizationNewe Ya’ar Research CenterRamat YishayIsrael
  3. 3.Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaUSA
  4. 4.Evogene Ltd.RehovotIsrael
  5. 5.College of Life ScienceBeijing Normal UniversityBeijingChina
  6. 6.Department of Vegetable ResearchVolcani Center-AROBet DaganIsrael

Personalised recommendations