Plant Molecular Biology

, Volume 76, Issue 3–5, pp 335–344 | Cite as

Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts

  • Soon Lim
  • Hiroki Ashida
  • Rie Watanabe
  • Koji Inai
  • Yun-Soo Kim
  • Keiko Mukougawa
  • Hirokazu Fukuda
  • Ken-ichi Tomizawa
  • Kei-ichi Ushiyama
  • Hiroshi Asao
  • Masahiro Tamoi
  • Hiroshi Masutani
  • Shigeru Shigeoka
  • Junji Yodoi
  • Akiho Yokota
Article

Abstract

The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.

Keywords

Chloroplasts Chloroplast transformation Lettuce Plastome Transplastomic plant Human thioredoxin-1 Therapeutic protein 

Supplementary material

11103_2011_9745_MOESM1_ESM.ppt (195 kb)
Supplementary material 1 (PPT 195 kb)

References

  1. Ahsan MK, Nakamura H, Tanito M, Yamada K, Utsumi H, Yodoi J (2005) Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt. Free Radic Biol Med 39:1549–1559CrossRefGoogle Scholar
  2. Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63:636–650PubMedCrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54PubMedCrossRefGoogle Scholar
  5. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586PubMedCrossRefGoogle Scholar
  6. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348PubMedCrossRefGoogle Scholar
  7. Daniell H, Lee SB, Panchal T, Wiebe PO (2001a) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009PubMedCrossRefGoogle Scholar
  8. Daniell H, Streatfield SJ, Wycoff K (2001b) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226PubMedCrossRefGoogle Scholar
  9. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91PubMedCrossRefGoogle Scholar
  10. Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005a) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783PubMedCrossRefGoogle Scholar
  11. Daniell H, Kumar S, Dufourmantel N (2005b) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245PubMedCrossRefGoogle Scholar
  12. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242PubMedCrossRefGoogle Scholar
  13. Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79PubMedCrossRefGoogle Scholar
  14. Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155PubMedCrossRefGoogle Scholar
  15. Hamada Y, Miyata S, Nii-Kono T, Kitazawa R, Kitazawa S, Higo S, Fukunaga M, Ueyama S, Nakamura H, Yodoi J, Fukagawa M, Kasuga M (2007) Overexpression of thioredoxin1 in transgenic mice suppresses development of diabetic nephropathy. Nephrol Dial Transplant 22:1547–1557PubMedCrossRefGoogle Scholar
  16. Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632PubMedGoogle Scholar
  17. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271PubMedCrossRefGoogle Scholar
  18. Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208PubMedCrossRefGoogle Scholar
  19. Hoshino T, Nakamura H, Okamoto M, Kato S, Araya S, Nomiyama K, Oizumi K, Young HA, Aizawa H, Yodoi J (2003) Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am J Respir Crit Care Med 168:1075–1083PubMedCrossRefGoogle Scholar
  20. Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv Agron 85:91–124CrossRefGoogle Scholar
  21. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217PubMedCrossRefGoogle Scholar
  22. Kasuno K, Nakamura H, Ono T, Muso E, Yodoi J (2003) Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injury. Kidney Int 64:1273–1282PubMedCrossRefGoogle Scholar
  23. Kawasaki K, Nishio A, Nakamura H, Uchida K, Fukui T, Ohana M, Yoshizawa H, Ohashi S, Tamaki H, Matsuura M, Asada M, Nishi T, Nakase H, Toyokuni S, Liu W, Yodoi J, Okazaki K, Chiba T (2005) Helicobacter felis-induced gastritis was suppressed in mice overexpressing thioredoxin-1. Lab Invest 85:1104–1117PubMedCrossRefGoogle Scholar
  24. Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58CrossRefGoogle Scholar
  25. Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774PubMedCrossRefGoogle Scholar
  26. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  27. Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28PubMedCrossRefGoogle Scholar
  28. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedCrossRefGoogle Scholar
  29. Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329PubMedCrossRefGoogle Scholar
  30. Matsuda M, Masutani H, Nakamura H, Miyajima S, Yamauchi A, Yonehara S, Uchida A, Irimajiri K, Horiuchi A, Yodoi J (1991) Protective activity of adult T cell leukemia-derived factor (ADF) against tumor necrosis factor-dependent cytotoxicity on U937 cells. J Immunol 147:3837–3841PubMedGoogle Scholar
  31. Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN’s lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys 429:123–133PubMedCrossRefGoogle Scholar
  32. Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367PubMedCrossRefGoogle Scholar
  33. Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 4:693–696PubMedCrossRefGoogle Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  35. Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369PubMedCrossRefGoogle Scholar
  36. Nakamura H, Mitsui A, Yodoi J (2002a) Thioredoxin overexpression in transgenic mice. Methods Enzymol 347:436–440PubMedCrossRefGoogle Scholar
  37. Nakamura H, Tamura S, Watanabe I, Iwasaki T, Yodoi J (2002b) Enhanced resistancy of thioredoxin-transgenic mice against influenza virus-induced pneumonia. Immunol Lett 82:165–170PubMedCrossRefGoogle Scholar
  38. Nakamura H, Masutani H, Yodoi J (2006) Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol 16:444–451PubMedCrossRefGoogle Scholar
  39. Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J (2009) Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev 61:303–309PubMedCrossRefGoogle Scholar
  40. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445PubMedCrossRefGoogle Scholar
  41. Ohashi S, Nishio A, Nakamura H, Kido M, Ueno S, Uza N, Inoue S, Kitamura H, Kiriya K, Asada M, Tamaki H, Matsuura M, Kawasaki K, Fukui T, Watanabe N, Nakase H, Yodoi J, Okazaki K, Chiba T (2006) Protective roles of redox-active protein thioredoxin-1 for severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 290:G772–G781PubMedCrossRefGoogle Scholar
  42. Okuyama H, Nakamura H, Shimahara Y, Araya S, Kawada N, Yamaoka Y, Yodoi J (2003) Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology 37:1015–1025PubMedCrossRefGoogle Scholar
  43. Okuyama H, Nakamura H, Shimahara Y, Uyama N, Kwon YW, Kawada N, Yamaoka Y, Yodoi J (2005) Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol 42:117–123PubMedCrossRefGoogle Scholar
  44. Petrides D, Sapidou E, Calandranis J (1995) Computer-aided process analysis and economic evaluation for biosynthetic human insulin production-A case study. Biotechnol Bioeng 48:529–541PubMedCrossRefGoogle Scholar
  45. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30:421–455PubMedCrossRefGoogle Scholar
  46. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts–oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510PubMedCrossRefGoogle Scholar
  47. Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104PubMedCrossRefGoogle Scholar
  48. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606PubMedCrossRefGoogle Scholar
  49. Sato A, Hoshino Y, Hara T, Muro S, Nakamura H, Mishima M, Yodoi J (2008) Thioredoxin-1 ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. J Pharmacol Exp Ther 325:380–388PubMedCrossRefGoogle Scholar
  50. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J (2002) Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409PubMedCrossRefGoogle Scholar
  51. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338PubMedCrossRefGoogle Scholar
  52. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917PubMedCrossRefGoogle Scholar
  53. Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, Yodoi J (1989) ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8:757–764PubMedGoogle Scholar
  54. Tamaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, Kido M, Inoue S, Mikami S, Asada M, Kiriya K, Kitamura H, Ohashi S, Fukui T, Kawasaki K, Matsuura M, Ishii Y, Okazaki K, Yodoi J, Chiba T (2006) Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 131:1110–1121PubMedCrossRefGoogle Scholar
  55. Tan A, Nakamura H, Kondo N, Tanito M, Kwon YW, Ahsan MK, Matsui H, Narita M, Yodoi J (2007) Thioredoxin-1 attenuates indomethacin-induced gastric mucosal injury in mice. Free Radic Res 41:861–869PubMedCrossRefGoogle Scholar
  56. Watanabe R, Nakamura H, Masutani H, Yodoi J (2010) Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther 127:261–270PubMedCrossRefGoogle Scholar
  57. Weichsei A, Gasdaska JR, Powis G, Montfort WR (1996) Crystal structure of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 4:735–751CrossRefGoogle Scholar
  58. Yabuta Y, Tamoi M, Yamamoto K, Tomizawa K, Yokota A, Shigeoka S (2008) Molecular design of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol 49:375–385PubMedCrossRefGoogle Scholar
  59. Yamamoto M, Yamato E, Toyoda S, Tashiro F, Ikegami H, Yodoi J, Miyazaki J (2008) Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 10:43–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Soon Lim
    • 1
    • 2
  • Hiroki Ashida
    • 1
  • Rie Watanabe
    • 1
    • 7
  • Koji Inai
    • 1
  • Yun-Soo Kim
    • 1
    • 2
  • Keiko Mukougawa
    • 1
  • Hirokazu Fukuda
    • 3
  • Ken-ichi Tomizawa
    • 4
  • Kei-ichi Ushiyama
    • 4
  • Hiroshi Asao
    • 5
  • Masahiro Tamoi
    • 6
  • Hiroshi Masutani
    • 7
  • Shigeru Shigeoka
    • 6
  • Junji Yodoi
    • 7
  • Akiho Yokota
    • 1
  1. 1.Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)Ikoma, NaraJapan
  2. 2.Division of Forest Resources, College of Forest and Environmental SciencesKangwon National UniversityChuncheonKorea
  3. 3.Department of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  4. 4.R & D DivisionPlant High-Technology Institute, Corp.Ikoma, NaraJapan
  5. 5.Nara Agricultural Experiment StationKashihara, NaraJapan
  6. 6.Department of Advanced Bioscience, Faculty of AgricultureKinki UniversityNakamachi, NaraJapan
  7. 7.Department of Biological Responses, Institute for Virus ResearchKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations