Plant Molecular Biology

, Volume 75, Issue 3, pp 291–304 | Cite as

Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum

  • Takayuki Ohnuma
  • Tomoyuki NumataEmail author
  • Takuo Osawa
  • Mamiko Mizuhara
  • Kjell M. Vårum
  • Tamo FukamizoEmail author


A class V chitinase from Nicotiana tabacum (NtChiV) with amino acid sequence similar to that of Serratia marcescens chitinase B (SmChiB) was expressed in E. coli and purified to homogeneity. When N-acetylglucosamine oligosaccharides [(NAG)n] were hydrolyzed by the purified NtChiV, the second glycosidic linkage from the non-reducing end was predominantly hydrolyzed in a manner similar to that of SmChiB. NtChiV was shown to hydrolyze partially N-acetylated chitosan non-processively, whereas SmChiB hydrolyzes the same substrate processively. The crystal structure of NtChiV was determined by the single-wavelength anomalous dispersion method at 1.2 Å resolution. The protein adopts a classical (β/α)8-barrel fold (residues 1–233 and 303–348) with an insertion of a small (α + β) domain (residues 234–302). This is the first crystal structure of a plant class V chitinase. The crystal structure of the inactive mutant NtChiV E115Q complexed with (NAG)4 was also solved and exhibited a linear conformation of the bound oligosaccharide occupying −2, +1, +2, and +3 subsites. The complex structure corresponds to an initial state of (NAG)4 binding, which is proposed to be converted into a bent conformation through sliding of the +1, +2, and +3 sugar units to −1, +1, and +2 subsites. Although NtChiV is similar to SmChiB, the chitin-binding domain is present in the C-terminus of the latter, but not in the former. Aromatic amino acid residues found in the substrate binding cleft of SmChiB, including Trp97, are substituted with aliphatic residues in NtChiV. These structural differences appear to be responsible for NtChiV being a non-processive enzyme.


Nicotiana tabacum Class V chitinase Crystal structure Mode of hydrolysis Binding mode 



The authors thank the beam-line staffs at BL-5A, BL-17A, NW12A, and NE3A of KEK (Ibaraki, Japan) for technical assistance during data collection, and Dr. Karl J. Kramer, USDA-ARS, Center for Grain and Animal Health Research (Manhattan, Kansas) for his reviewing the manuscript. Thanks are also due to Hideko Inanaga of AIST for technical assistance and Dr. Masahiro Tamoi of Kinki University for kindly providing the first strand cDNA of tobacco.

Supplementary material

11103_2010_9727_MOESM1_ESM.ppt (540 kb)
Supplementary material 1 (PPT 540 kb)


  1. Abrahams JP, Leslie AGW (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D52:30–42Google Scholar
  2. Aguilera B, Ghauharali-van der Vlugt K, Helmond MT, Out JM, Donker-Koopman WE, Groener JE, Boot RG, Renkema GH, van der Marel GA, van Boom JH, Overkleeft HS, Aerts JM (2003) Transglycosidase activity of chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem 278:40911–40916CrossRefPubMedGoogle Scholar
  3. Aronson NN Jr, Halloran BA, Alexyev MF, Amable L, Madura JD, Pasupulati L, Worth C, van Roey P (2003) Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Biochem J 376:87–95CrossRefPubMedGoogle Scholar
  4. Berth G, Dautzenberg H (2002) The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydr Polym 47:39–51CrossRefGoogle Scholar
  5. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D54:905–921Google Scholar
  6. Brurberg MB, Eijsink VG, Haandrikman AJ, Venema G, Nes IF (1995) Chitinase B from Serratia marcescens BJL200 is exported to the periplasm without processing. Microbiology 141:123–131CrossRefPubMedGoogle Scholar
  7. Brurberg MB, Nes IF, Eijsink VG (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581–1589CrossRefPubMedGoogle Scholar
  8. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40CrossRefPubMedGoogle Scholar
  9. de La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276:472–494CrossRefGoogle Scholar
  10. Fukamizo T, Sasaki C, Schelp E, Bortone K, Robertus JD (2001) Kinetic properties of chitinase-1 from the fungal pathogen Coccidioides immitis. Biochemistry 40:2448–2454CrossRefPubMedGoogle Scholar
  11. Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM (2002) Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J Biol Chem 277:25537–25544CrossRefPubMedGoogle Scholar
  12. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644CrossRefPubMedGoogle Scholar
  13. Honda Y, Kitaoka M, Tokuyasu K, Sasaki C, Fukamizo T, Hayashi K (2003) Kinetic studies on the hydrolysis of N-acetylated and N-deacetylated derivatives of 4-methylumbelliferyl chitobioside by the family 18 chitinases ChiA and ChiB from Serratia marcescens. J Biochem 133:253–258CrossRefPubMedGoogle Scholar
  14. Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VG (2006a) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503CrossRefPubMedGoogle Scholar
  15. Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VG (2006b) Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci USA 103:18089–18094CrossRefPubMedGoogle Scholar
  16. Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156Google Scholar
  17. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A47:110–119Google Scholar
  18. Kasprzewska A (2003) Plant chitinases–regulation and function. Cell Mol Biol Lett 8:809–824PubMedGoogle Scholar
  19. Koga D, Yoshioka T, Arakane Y (1998) HPLC analysis of anomeric formation and cleavage pattern by chitinolytic enzyme. Biosci Biotechnol Biochem 62:1643–1646CrossRefGoogle Scholar
  20. Kurita K, Sannan T, Iwakura Y (1977) Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by heterogeneous and homogeneous hydrolysis. Macromol Chem 178:3197–3202CrossRefGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  22. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  23. Lü Y, Yang H, Hu H, Wang Y, Rao Z, Jin C (2009) Mutation of Trp137 to glutamate completely removes transglycosyl activity associated with the Aspergillus fumigatus AfChiB1. Glycoconj J 26:525–534CrossRefPubMedGoogle Scholar
  24. Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ, Linthorst HJ (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480CrossRefPubMedGoogle Scholar
  25. Ohnuma T, Osawa T, Fukamizo T, Numata T (2010) Crystallization and preliminary X-ray diffraction analysis of a class V chitinase from Nicotiana tabacum. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1599–1601Google Scholar
  26. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  27. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463CrossRefPubMedGoogle Scholar
  28. Salzer P, Feddermann N, Wiemken A, Boller T, Staehelin C (2004) Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108–1: a comparison between symbiosis-specific class V and defence-related class IV chitinases. Planta 219:626–638CrossRefPubMedGoogle Scholar
  29. Samac DA, Hironaka CM, Yallaly PE, Shah DM (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93:907–914CrossRefPubMedGoogle Scholar
  30. Sasaki C, Yokoyama A, Itoh Y, Hashimoto M, Watanabe T, Fukamizo T (2002) Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes. J Biochem 131:557–564PubMedGoogle Scholar
  31. Sasaki C, Vårum KM, Itoh Y, Tamoi M, Fukamizo T (2006) Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology 16:1242–1250CrossRefPubMedGoogle Scholar
  32. Shinshi H, Neuhaus JM, Ryals J, Meins F Jr (1990) Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Biol Plant Mol 14:357–368CrossRefGoogle Scholar
  33. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  34. Songsiriritthigul C, Pantoom S, Aguda AH, Robinson RC, Suginta W (2008) Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: implications for the catalytic mechanism. J Struct Biol 162:491–499CrossRefPubMedGoogle Scholar
  35. Sørbotten A, Horn SJ, Eijsink VG, Vårum KM (2005) Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J 272:538–549CrossRefPubMedGoogle Scholar
  36. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89CrossRefPubMedGoogle Scholar
  37. Suzukawa K, Yamagami T, Ohnuma T, Hirakawa H, Kuhara S, Aso Y, Ishiguro M (2003) Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs. Biosci Biotechnol Biochem 67:341–346CrossRefPubMedGoogle Scholar
  38. Synstad B, Gåseidnes S, Van Aalten DM, Vriend G, Nielsen JE, Eijsink VG (2004) Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur J Biochem 271:253–262CrossRefPubMedGoogle Scholar
  39. Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi G, Iwasaki H, Ohnuma T, Fukamizo T (2009) A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology 19:1452–1461CrossRefPubMedGoogle Scholar
  40. Taira T, Fujiwara M, Dennhart N, Hayashi H, Onaga S, Ohnuma T, Letzel T, Sakuda S, Fukamizo T (2010) Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: a study involving site-directed mutagenesis, HPLC, and real-time ESI-MS. Biochim Biophys Acta 1804:668–675PubMedGoogle Scholar
  41. Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T (2009) Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. Biosci Biotechnol Biochem 73:1066–1071CrossRefPubMedGoogle Scholar
  42. Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619–15623CrossRefPubMedGoogle Scholar
  43. Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D60:2184–2195Google Scholar
  44. van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VG (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98:8979–8984CrossRefPubMedGoogle Scholar
  45. Van Damme EJ, Culerrier R, Barre A, Alvarez R, Rougé P, Peumans WJ (2007) A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes. Plant Physiol 144:662–672CrossRefPubMedGoogle Scholar
  46. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr Res 211:17–23CrossRefPubMedGoogle Scholar
  47. Watanabe T, Suzuki K, Oyanagi W, Ohnishi K, Tanaka H (1990) Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J Biol Chem 265:15659–15665PubMedGoogle Scholar
  48. Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M, Ferrer S, Regue M (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7117PubMedGoogle Scholar
  49. Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K (1999) Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology 145:3353–3363CrossRefPubMedGoogle Scholar
  50. Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J (2003) Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem J 376:237–244CrossRefPubMedGoogle Scholar
  51. Weeks CM, Miller R (1999) The design and implementation of SnB v2.0. J Appl Crystallogr 32:120–124CrossRefGoogle Scholar
  52. Yamada H, Imoto T (1981) A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydr Res 92:160–162CrossRefPubMedGoogle Scholar
  53. Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, Eijsink VG (2009) Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 284:10610–10617CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Takayuki Ohnuma
    • 1
  • Tomoyuki Numata
    • 2
    Email author
  • Takuo Osawa
    • 2
  • Mamiko Mizuhara
    • 1
  • Kjell M. Vårum
    • 3
  • Tamo Fukamizo
    • 1
    Email author
  1. 1.Department of Advanced BioscienceKinki UniversityNaraJapan
  2. 2.Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Department of BiotechnologyNorwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations