Advertisement

Plant Molecular Biology

, Volume 75, Issue 3, pp 277–290 | Cite as

Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system

  • Anna Hangyáné Benkovics
  • Tünde Nyikó
  • Zsuzsanna Mérai
  • Dániel Silhavy
  • György Dénes Bisztray
Article

Abstract

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and eliminates transcripts having a premature translation termination codon (PTC). NMD is also involved in the control of several wild-type mRNAs. The NMD core machinery consists of three highly conserved NMD factors (UPF1, UPF2 and UPF3) and at least one less conserved 14-3-3-like domain containing protein (SMG7). A PTC is identified by UPF factors, and then SMG7 triggers rapid transcript decay. UPF factors are generally encoded by a single gene, whereas SMG7 has duplicated several times during evolution. Recently it was reported that the plant SMG7 is autoregulated through NMD and that SMG7 has two relatively divergent paralogs in dicots, SMG7 and SMG7L. In mammals all three SMG7 related genes (SMG5, SMG6 and SMG7) are essential in NMD, so we hypothesized that in plants the SMG7 and SMG7L duplicates may also play distinct roles in NMD. To test this possibility, we have analyzed the evolution and the function of plant SMG7 homologs. We show that SMG7L is not required for plant NMD. Interestingly, we found that the grapevine and poplar genomes contain two quite divergent SMG7 paralogs which may have derived from an ancient duplication event. Using heterolog depletion/complementation assays we demonstrate that both grapevine SMG7 copies retained the complete NMD activity and both of them are under NMD control, whilst SMG7L has lost NMD activity and NMD control.

Keywords

NMD SMG7 Grapevine VIGS Gene duplication Plant 

Notes

Acknowledgments

We are grateful to C. Lacomme (University of Edinburgh), D. Baulcombe (University of Cambridge) and SP. Dinesh-Kumar (Yale University) for TRV vectors. We thank Margaret Boulton (John Innes Centre, Norwich, UK) for language corrections. This research was supported by grants from the OTKA (K81481, CK80029). We thank E. Barta (University of Debrecen) for his help with bioinformatical studies. A. Hangyáné Benkovics is a graduate student of Corvinus University of Budapest (“Program of Viticulture” at the Doctoral School of Horticulture). T. Nyikó is a graduate student of ELTE “Classical and Molecular Genetics” PhD program.

Supplementary material

11103_2010_9726_MOESM1_ESM.doc (40.7 mb)
Supplementary material 1 (DOC 41680 kb)
11103_2010_9726_MOESM2_ESM.doc (178 kb)
Supplementary material 2 (DOC 178 kb)
11103_2010_9726_MOESM3_ESM.doc (86 kb)
Supplementary material 3 (DOC 86 kb)

References

  1. Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118CrossRefPubMedGoogle Scholar
  2. Anders KR, Grimson A, Anderson P (2003) SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J 22:641–650CrossRefPubMedGoogle Scholar
  3. Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489CrossRefPubMedGoogle Scholar
  4. Buhler M, Steiner S, Mohn F, Paillusson A, Muhlemann O (2006) EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length. Nat Struct Mol Biol 13:462–464CrossRefPubMedGoogle Scholar
  5. Cali BM, Kuchma SL, Latham J, Anderson P (1999) smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 151:605–616PubMedGoogle Scholar
  6. Cenci A, Combes MC, Lashermes P (2010) Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Mol Genet Genomics 283:493–501CrossRefPubMedGoogle Scholar
  7. Chan WK, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gecz J, Wilkinson MF (2009) A UPF3-mediated regulatory switch that maintains RNA surveillance. Nat Struct Mol Biol 16:747–753CrossRefPubMedGoogle Scholar
  8. Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH (2009) SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 16:49–55CrossRefPubMedGoogle Scholar
  9. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E (2005) SMG7 is a 14–3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol Cell 17:537–547CrossRefPubMedGoogle Scholar
  10. Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E (2003) Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J 22:3960–3970CrossRefPubMedGoogle Scholar
  11. Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617CrossRefPubMedGoogle Scholar
  12. Holtorf H, Schob H, Kunz C, Waldvogel R, Meins F Jr (1999) Stochastic and nonstochastic post-transcriptional silencing of chitinase and beta-1, 3-glucanase genes involves increased RNA turnover-possible role for ribosome-independent RNA degradation. Plant Cell 11:471–484CrossRefPubMedGoogle Scholar
  13. Hori K, Watanabe Y (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43:530–540CrossRefPubMedGoogle Scholar
  14. Hori K, Watanabe Y (2007) Context analysis of termination codons in mRNA that are recognized by plant NMD. Plant Cell Physiol 48:1072–1078CrossRefPubMedGoogle Scholar
  15. Huntzinger E, Kashima I, Fauser M, Sauliere J, Izaurralde E (2008) SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14:2609–2617CrossRefPubMedGoogle Scholar
  16. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  17. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 20:355–367CrossRefPubMedGoogle Scholar
  18. Kerenyi Z, Merai Z, Hiripi L, Benkovics A, Gyula P, Lacomme C, Barta E, Nagy F, Silhavy D (2008) Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. EMBO J 27:1585–1595CrossRefPubMedGoogle Scholar
  19. Kertesz S, Kerenyi Z, Merai Z, Bartos I, Palfy T, Barta E, Silhavy D (2006) Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res 34:6147–6157CrossRefPubMedGoogle Scholar
  20. Kurihara Y, Matsui A, Hanada K, Kawashima M, Ishida J, Morosawa T, Tanaka M, Kaminuma E, Mochizuki Y, Matsushima A, Toyoda T, Shinozaki K, Seki M (2009) Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proc Natl Acad Sci USA 106:2453–2458CrossRefPubMedGoogle Scholar
  21. Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869CrossRefPubMedGoogle Scholar
  22. Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987–4997CrossRefPubMedGoogle Scholar
  23. Longman D, Plasterk RH, Johnstone IL, Caceres JF (2007) Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev 21:1075–1085CrossRefPubMedGoogle Scholar
  24. Luke B, Azzalin CM, Hug N, Deplazes A, Peter M, Lingner J (2007) Saccharomyces cerevisiae Ebs1p is a putative ortholog of human Smg7 and promotes nonsense-mediated mRNA decay. Nucleic Acids Res 35:7688–7697CrossRefPubMedGoogle Scholar
  25. Muhlemann O (2008) Recognition of nonsense mRNA: towards a unified model. Biochem Soc Trans 36:497–501CrossRefPubMedGoogle Scholar
  26. Muruganantham M, Moskovitz Y, Haviv S, Horesh T, Fenigstein A, Preez J, Stephan D, Burger JT, Mawassi M (2009) Grapevine virusA-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Methods 155:167–174CrossRefPubMedGoogle Scholar
  27. Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23:198–199CrossRefPubMedGoogle Scholar
  28. Nyiko T, Sonkoly B, Merai Z, Benkovics AH, Silhavy D (2009) Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol Biol 71:367–378CrossRefPubMedGoogle Scholar
  29. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S (2003) Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell 12:1187–1200CrossRefPubMedGoogle Scholar
  30. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197CrossRefPubMedGoogle Scholar
  31. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013CrossRefPubMedGoogle Scholar
  32. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245CrossRefPubMedGoogle Scholar
  33. Rehwinkel J, Letunic I, Raes J, Bork P, Izaurralde E (2005) Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11:1530–1544CrossRefPubMedGoogle Scholar
  34. Rehwinkel J, Raes J, Izaurralde E (2006) Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends Biochem Sci 31:639–646CrossRefPubMedGoogle Scholar
  35. Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121:2208–2216CrossRefPubMedGoogle Scholar
  36. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14–3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14–3-3 in ligand binding. Mol Cell 4:153–166CrossRefPubMedGoogle Scholar
  37. Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, Akua T, Avramov M, Frankel N, Berezin I, Gottlieb D, Elazar M, David-Assael O, Tcherkas V, Mizrachi K, Shaul O (2009) The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. Plant J 60:1031–1042CrossRefPubMedGoogle Scholar
  38. Sauliere J, Haque N, Harms S, Barbosa I, Blanchette M, Le Hir H (2010) The exon junction complex differentially marks spliced junctions. Nat Struct Mol Biol 17:1269–1271Google Scholar
  39. Schwartz AM, Komarova TV, Skulachev MV, Zvereva AS, Dorokhov Iu L, Atabekov JG (2006) Stability of plant mRNAs depends on the length of the 3′-untranslated region. Biochemistry (Mosc) 71:1377–1384CrossRefGoogle Scholar
  40. Silhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyan J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21-–25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080CrossRefPubMedGoogle Scholar
  41. Silva AL, Romao L (2009) The mammalian nonsense-mediated mRNA decay pathway: to decay or not to decay! Which players make the decision? FEBS Lett 583:499–505CrossRefPubMedGoogle Scholar
  42. Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111CrossRefPubMedGoogle Scholar
  43. Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781CrossRefPubMedGoogle Scholar
  44. Stalder L, Muhlemann O (2009) Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA 15:1265–1273CrossRefPubMedGoogle Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  46. Unterholzner L, Izaurralde E (2004) SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell 16:587–596CrossRefPubMedGoogle Scholar
  47. Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136:3999–4009CrossRefPubMedGoogle Scholar
  48. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326CrossRefPubMedGoogle Scholar
  49. Wittkopp N, Huntzinger E, Weiler C, Sauliere J, Schmidt S, Sonawane M, Izaurralde E (2009) Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Mol Cell Biol 29:3517–3528CrossRefPubMedGoogle Scholar
  50. Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30CrossRefPubMedGoogle Scholar
  51. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S (2001) Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15:2215–2228CrossRefPubMedGoogle Scholar
  52. Yoine M, Nishii T, Nakamura K (2006a) Arabidopsis UPF1 RNA helicase for nonsense-mediated mRNA decay is involved in seed size control and is essential for growth. Plant Cell Physiol 47:572–580CrossRefPubMedGoogle Scholar
  53. Yoine M, Ohto MA, Onai K, Mita S, Nakamura K (2006b) The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. Plant J 47:49–62CrossRefPubMedGoogle Scholar
  54. Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anna Hangyáné Benkovics
    • 1
    • 2
  • Tünde Nyikó
    • 1
  • Zsuzsanna Mérai
    • 1
    • 3
  • Dániel Silhavy
    • 1
  • György Dénes Bisztray
    • 2
  1. 1.Agricultural Biotechnology CenterGödöllőHungary
  2. 2.Faculty of Horticultural ScienceCorvinus University of BudapestBudapestHungary
  3. 3.Institut für Biologie II/BotanikAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations