Plant Molecular Biology

, Volume 76, Issue 3–5, pp 453–461 | Cite as

Visual spectinomycin resistance (aadA au ) gene for facile identification of transplastomic sectors in tobacco leaves

  • Tarinee Tungsuchat-Huang
  • Kristina Marie Slivinski
  • Sugey Ramona Sinagawa-Garcia
  • Pal Maliga


Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar au ) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar au gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA au transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA au genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.


Aurea aadA aadAau Leaf variegation Plastid transformation Spectinomycin resistance Nicotiana tabacum 



This work was supported by grants from the USDA National Institute of Food and Agriculture Biotechnology Risk Assessment Research Grant Program Award No. 2005-33120-16524 and 2008-03012. Kristina Marie Slivinski was supported by a fellowship from the Disabled American Veterans.


  1. Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809PubMedGoogle Scholar
  2. Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66. doi: 10.1104/pp.109.140533 PubMedCrossRefGoogle Scholar
  3. Baena-Gonzales E, Allahverdieva Y, Svab Z, Maliga P, Josse EM, Kuntz M, Mäenpää P, Aro EM (2003) Deletion of the tobacco plastid psbA gene triggers post-transcriptional up-regulation of thylakoid-associated terminal oxidase (PTOX) and the NAD(P)H complex. Plant J 35:704–716. doi: 10.1046/j.1365-313X.2003.01842.x CrossRefGoogle Scholar
  4. Barone P, Zhang XH, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [alpha]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202. doi: 10.1093/jxb/erp160 PubMedCrossRefGoogle Scholar
  5. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106. doi: 10.1016/j.copbio.2006.12.001 PubMedCrossRefGoogle Scholar
  6. Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56PubMedCrossRefGoogle Scholar
  7. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995PubMedCrossRefGoogle Scholar
  8. Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783. doi: 10.1016/j.vaccine.2004.11.004 PubMedCrossRefGoogle Scholar
  9. Huang FC, Klaus SMJ, Herz S, Zuo Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27. doi: 10.1007/s00438-002-0738-6 PubMedCrossRefGoogle Scholar
  10. Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1, 5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973PubMedCrossRefGoogle Scholar
  11. Kittiwongwattana C, Lutz KA, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64:137–143. doi: 10.1007/s11103-007-9140-4 PubMedCrossRefGoogle Scholar
  12. Kuroda H, Maliga P (2001a) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975PubMedCrossRefGoogle Scholar
  13. Kuroda H, Maliga P (2001b) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436PubMedCrossRefGoogle Scholar
  14. Kuroda H, Maliga P (2002) Over-expression of the clpP 5-UTR in a chimeric context causes a mutant phenotype suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606. doi: 10.1104/pp.004986 PubMedCrossRefGoogle Scholar
  15. Li W, Ruf S, Bock R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol. doi: 10.1007/s11103-010-9678-4
  16. Lutz KA, Maliga P (2007) Transformation of the plastid genome to study RNA editing. Methods Enzymol 424:501–518. doi: 10.1016/S0076-6879(07)24023-6 PubMedCrossRefGoogle Scholar
  17. Lutz KA, Maliga P (2008) Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J 56:975–983. doi: 10.1111/j.1365-313X.2008.03655.x PubMedCrossRefGoogle Scholar
  18. Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590PubMedCrossRefGoogle Scholar
  19. Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913PubMedCrossRefGoogle Scholar
  20. Lutz KA, Svab Z, Maliga P (2006) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protocols 1:900–910. doi: 10.1038/nprot.2006.118 CrossRefGoogle Scholar
  21. Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210. doi: 10.1104/pp.107.106963 PubMedCrossRefGoogle Scholar
  22. Madoka Y, Tomizawa KI, Mizoi J, Nishida I, Nagano Y, Sasaki Y (2002) Chloroplast transformation with modified accD operon increases acetyl-Co-A carboxylaase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol 43:1518–1525PubMedCrossRefGoogle Scholar
  23. Maliga P (2004) Plastid transformation in higher plants. Ann Rev Plant Biol 55:289–313. doi: 10.1146/annurev.arplant.55.031903.141633 CrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for the growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  25. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  26. Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Diversity and evolution of plants—genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, UK, pp 45–68CrossRefGoogle Scholar
  27. Sharwood RE, von Caemmerer S, Maliga P, Whitney SM (2008) The catalytic properties of hybrid rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol 146:83–96. doi: 10.1104/pp.107.109058 PubMedCrossRefGoogle Scholar
  28. Sinagawa-Garcia SR, Tungsuchat-Huang T, Paredes-Lopez O, Maliga P (2009) Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol Biol 70:487–498. doi: 10.1007/s11103-009-9486-x PubMedCrossRefGoogle Scholar
  29. Sprengart ML, Fuchs E, Porter AG (1996) The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J 15:665–674PubMedGoogle Scholar
  30. Sriraman P, Silhavy D, Maliga P (1998) The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Res 26:4874–4879PubMedCrossRefGoogle Scholar
  31. Suzuki JY, Sriraman P, Svab Z, Maliga P (2003) Unique architecture of the plastid ribosomal RNA operon promoter recognized by the multisubunit RNA polymerase (PEP) in tobacco and other higher plants. Plant Cell 15:195–205PubMedCrossRefGoogle Scholar
  32. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917PubMedCrossRefGoogle Scholar
  33. Tungsuchat-Huang T, Sinagawa-Garcia SR, Paredes-Lopez O, Maliga P (2010) Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats. Plant Physiol 153:252–259. doi: 10.1104/pp.109.152892 PubMedCrossRefGoogle Scholar
  34. Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118. doi: 10.1023/A:1013892009589 PubMedCrossRefGoogle Scholar
  35. Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth of tobacco. Proc Natl Acad Sci USA 98:14738–14743PubMedCrossRefGoogle Scholar
  36. Whitney SM, Andrews TJ (2003) Photosynthesis and growth of tobacco with substituted bacterial rubisco mirror the properties of the introduced enzyme. Plant Physiol 133:287–294. doi: 10.1104/pp.103.026146 PubMedCrossRefGoogle Scholar
  37. Ye GN, Colburn S, Xu CW, Hajdukiewicz PTJ, Staub JM (2003) Persistance of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance. Plant Physiol 133:402–410PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tarinee Tungsuchat-Huang
    • 1
  • Kristina Marie Slivinski
    • 1
  • Sugey Ramona Sinagawa-Garcia
    • 1
    • 2
  • Pal Maliga
    • 1
  1. 1.Waksman Institute of Microbiology, RutgersThe State University of New JerseyPiscatawayUSA
  2. 2.Universidad Autónoma de Nuevo LeónGral. EscobedoMexico

Personalised recommendations