Plant Molecular Biology

, Volume 75, Issue 1–2, pp 77–92

ARABIDILLO proteins have a novel and conserved domain structure important for the regulation of their stability

  • Cândida Nibau
  • Daniel J. Gibbs
  • Karen A. Bunting
  • Laura A. Moody
  • Emma J. Smiles
  • Jennifer A. Tubby
  • Susan J. Bradshaw
  • Juliet C. Coates


ARABIDILLO proteins are F-box-Armadillo (ARM) proteins that regulate root branching in Arabidopsis. Many F-box proteins in plants, yeast and mammals are unstable. In plants, the mechanism for this instability has not been fully investigated. Here, we show that a conserved family of plant ARABIDILLO-related proteins has a unique domain structure consisting of an F-box and leucine-rich repeats (LRRs) followed by ARM-repeats. The LRRs are similar to those found in other plant and animal F-box proteins, including cell cycle proteins and hormone receptors. We demonstrate that the LRRs are required for ARABIDILLO1 function in vivo. ARABIDILLO1 protein is unstable: we show that ARABIDILLO1 protein is associated with ubiquitin and is turned over by the proteasome. Both the F-box and LRR regions of ARABIDILLO1 appear to enable this turnover to occur. Application of known lateral root-regulating signals has no effect on ARABIDILLO1 stability. In addition, plants that lack or overexpress ARABIDILLO proteins respond normally to known lateral root-regulating signals. Thus, we suggest that the signal(s) regulating ARABIDILLO stability in vivo may be either highly specific or novel. The structural conservation between ARABIDILLOs and other plant and animal F-box proteins suggests that the stability of other F-box proteins may be controlled by similar mechanisms.


F-box Armadillo repeats Leucine-rich repeats Protein stability 

Supplementary material

11103_2010_9709_MOESM1_ESM.pdf (121 kb)
Supplementary material 1 (PDF 122 kb)
11103_2010_9709_MOESM2_ESM.pdf (11.1 mb)
Supplementary material 2 (PDF 11 MB)


  1. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker J, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401Google Scholar
  2. Ayad N, Rankin S, Murakami M, Jebanathirajah J, Gygi S, Kirschner M (2003) Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell 113:101–113PubMedCrossRefGoogle Scholar
  3. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J, Elledge S (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274PubMedCrossRefGoogle Scholar
  4. Bashir T, Dorrello N, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428:190–193PubMedCrossRefGoogle Scholar
  5. Benkert P, Tosatto S, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277PubMedCrossRefGoogle Scholar
  6. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980PubMedCrossRefGoogle Scholar
  7. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  8. Berndt JD, Moon R, Major M (2009) Beta-catenin gets jaded and von Hippel-Lindau is to blame. Trends Biochem Sci 34:101–104PubMedCrossRefGoogle Scholar
  9. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13PubMedCrossRefGoogle Scholar
  10. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defence hormone. Annu Rev Plant Biol 60:183–205PubMedCrossRefGoogle Scholar
  11. Chae E, Tan QK, Hill T, Irish V (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235–1245PubMedCrossRefGoogle Scholar
  12. Chen V, Arendall WR, Headd J, Keedy D, Immormino R, Kapral G, Murray L, Richardson J, Richardson D (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21PubMedCrossRefGoogle Scholar
  13. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480PubMedCrossRefGoogle Scholar
  14. Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  15. Coates J (2003) Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 13:463–471PubMedCrossRefGoogle Scholar
  16. Coates J, Laplaze L, Haseloff J (2006) Armadillo-related proteins promote lateral root development in Arabidopsis. Proc Natl Acad Sci USA 103:1621–1626PubMedCrossRefGoogle Scholar
  17. Cooper HJ, Heath JK, Jaffray E, Hay RT, Lam TT, Marshall A (2004) Identification of sites of ubiquitination in proteins: a Fourier transform ion cyclotron resonance mass spectrometry approach. Anal Chem 76:6982–6988PubMedCrossRefGoogle Scholar
  18. Deshaies R (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467PubMedCrossRefGoogle Scholar
  19. Finn RD, Tate J, Mistry J, Coggill P, Sammut S, Hotz H, Ceric G, Forslund K, Eddy S, Sonnhammer E, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288PubMedCrossRefGoogle Scholar
  20. Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313PubMedCrossRefGoogle Scholar
  21. Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff S, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186PubMedCrossRefGoogle Scholar
  22. Gagne J, Downes B, Shiu S, Durski A, Vierstra R (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524PubMedCrossRefGoogle Scholar
  23. Galan J, Peter M (1999) Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sci USA 96:9124–9129PubMedCrossRefGoogle Scholar
  24. Gietz R, Woods R (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96PubMedCrossRefGoogle Scholar
  25. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224PubMedCrossRefGoogle Scholar
  26. Gray W, Del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby W, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691PubMedCrossRefGoogle Scholar
  27. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson P, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4:799–812PubMedCrossRefGoogle Scholar
  28. Harberd N, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339PubMedCrossRefGoogle Scholar
  29. Hellens R, Edwards E, Leyland N, Bean S, Mullineaux P (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832PubMedCrossRefGoogle Scholar
  30. Hermand D (2006) F-box proteins: more than baits for the SCF? Cell Div 1:30PubMedCrossRefGoogle Scholar
  31. Hilt W, Enenkel C, Gruhler A, Singer T, Wolf D (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem 268:3479–3486PubMedGoogle Scholar
  32. Himanen K, Boucheron E, Vanneste S, De Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351PubMedCrossRefGoogle Scholar
  33. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi A, Khurana J (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483PubMedCrossRefGoogle Scholar
  34. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, Mcginnis S, Madden T (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9PubMedCrossRefGoogle Scholar
  35. Jurado S, Diaz-Trivino S, Abraham Z, Manzano C, Gutierrez C, Del Pozo C (2008) SKP2A, an F-box protein that regulates cell division, is degraded via the ubiquitin pathway. Plant J 53:828–841PubMedCrossRefGoogle Scholar
  36. Kepinski S (2007) The anatomy of auxin perception. Bioessays 29:953–956PubMedCrossRefGoogle Scholar
  37. Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360PubMedCrossRefGoogle Scholar
  38. Kimbrel E, Kung A (2009) The F-box protein beta-TrCp1/Fbw1a interacts with p300 to enhance beta-catenin transcriptional activity. J Biol Chem 284:13033–13044PubMedCrossRefGoogle Scholar
  39. Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421PubMedCrossRefGoogle Scholar
  40. Kobe B, Deisenhofer J (1995a) Proteins with leucine-rich repeats. Curr Opin Struct Biol 5:409–416PubMedCrossRefGoogle Scholar
  41. Kobe B, Deisenhofer J (1995b) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374:183–186PubMedCrossRefGoogle Scholar
  42. Koyama-Nasu R, David G, Tanese N (2007) The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nat Cell Biol 9:1074–1080PubMedCrossRefGoogle Scholar
  43. Larkin M, Blackshields G, Brown N, Chenna R, Mcgettigan P, Mcwilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  44. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232PubMedCrossRefGoogle Scholar
  45. Li Y, Hao B (2010) Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase. J Biol Chem 285:13896–13906PubMedCrossRefGoogle Scholar
  46. Li Y, Gazdoiu S, Pan ZQ, Fuchs S (2004) Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J Biol Chem 279:11074–11080PubMedCrossRefGoogle Scholar
  47. Lipford J, Deshaies R (2003) Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5:845–850PubMedCrossRefGoogle Scholar
  48. Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66PubMedCrossRefGoogle Scholar
  49. Marchler-Bauer A, Anderson J, Derbyshire M, Deweese-Scott C, Gonzales N, Gwadz M, Hao L, He S, Hurwitz D, Jackson J, Ke Z, Krylov D, Lanczycki C, Liebert C, Liu C, Lu F, Lu S, Marchler G, Mullokandov M, Song J, Thanki N, Yamashita R, Yin JJ, Zhang D, Bryant S (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240PubMedCrossRefGoogle Scholar
  50. Margottin-Goguet F, Hsu JY, Loktev A, Hsieh H, Reimann J, Jackson P (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4:813–826PubMedCrossRefGoogle Scholar
  51. Mathias N, Johnson S, Byers B, Goebl M (1999) The abundance of cell cycle regulatory protein Cdc4p is controlled by interactions between its F box and Skp1p. Mol Cell Biol 19:1759–1767PubMedGoogle Scholar
  52. Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer D, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480PubMedCrossRefGoogle Scholar
  53. Mudgil Y, Shiu S, Stone S, Salt J, Goring D (2004) A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family. Plant Physiol 134:59–66PubMedCrossRefGoogle Scholar
  54. Nalley K, Johnston S, Kodadek T (2006) Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442:1054–1057PubMedCrossRefGoogle Scholar
  55. Nibau C, Gibbs D, Coates J (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614PubMedCrossRefGoogle Scholar
  56. Patton E, Willems A, Tyers M (1998) Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 14:236–243PubMedCrossRefGoogle Scholar
  57. Petroski M, Deshaies R (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20PubMedCrossRefGoogle Scholar
  58. Risseeuw E, Daskalchuk T, Banks T, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers D, Crosby W (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34:753–767PubMedCrossRefGoogle Scholar
  59. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738PubMedCrossRefGoogle Scholar
  60. Schulman B, Carrano A, Jeffrey P, Bowen Z, Kinnucan E, Finnin M, Elledge S, Harper J, Pagano M, Pavletich N (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408:381–386PubMedCrossRefGoogle Scholar
  61. Schultz J, Milpetz F, Bork P, Ponting C (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864PubMedCrossRefGoogle Scholar
  62. Somers D, Fujiwara S (2009) Thinking outside the F-box: novel ligands for novel receptors. Trends Plant Sci 14:206–213PubMedCrossRefGoogle Scholar
  63. Stuttmann J, Lechner E, Guerois R, Parker J, Nussaume L, Genschik P, Noel L (2009) COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis. J Biol Chem 284:7920–7930PubMedCrossRefGoogle Scholar
  64. Takahashi N, Kuroda H, Kuromori T, Hirayama T, Seki M, Shinozaki K, Shimada H, Matsui M (2004) Expression and interaction analysis of Arabidopsis Skp1-related genes. Plant Cell Physiol 45:83–91PubMedCrossRefGoogle Scholar
  65. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson C, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedCrossRefGoogle Scholar
  66. Tao LZ, Cheung A, Wu HM (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760PubMedCrossRefGoogle Scholar
  67. Van Den Burg HA, Tsitsigiannis D, Rowland O, Lo J, Rallapalli G, Maclean D, Takken F, Jones J (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20:697–719PubMedCrossRefGoogle Scholar
  68. Wei W, Ayad N, Wan Y, Zhang G, Kirschner M, Kaelin WJ (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–198PubMedCrossRefGoogle Scholar
  69. Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F, Krek W (2000) The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J 19:5362–5375PubMedCrossRefGoogle Scholar
  70. Wu G, Liu C, He X (2004) Ozz; a new name on the long list of beta-catenin’s nemeses. Mol Cell 13:451–453PubMedCrossRefGoogle Scholar
  71. Wu G, Xu G, Schulman B, Jeffrey P, Harper J, Pavletich N (2003) Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11:1445–1456PubMedCrossRefGoogle Scholar
  72. Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA 106:835–840PubMedCrossRefGoogle Scholar
  73. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd N (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230PubMedCrossRefGoogle Scholar
  74. Zhao D, Ni W, Feng B, Han T, Petrasek M, Ma H (2003) Members of the Arabidopsis-SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. Plant Physiol 133:203–217PubMedCrossRefGoogle Scholar
  75. Zheng N, Schulman B, Song L, Miller J, Jeffrey P, Wang P, Chu C, Koepp D, Elledge S, Pagano M, Conaway R, Conaway J, Harper J, Pavletich N (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709PubMedCrossRefGoogle Scholar
  76. Zhou P, Howley P (1998) Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell 2:571–580PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cândida Nibau
    • 1
    • 2
  • Daniel J. Gibbs
    • 1
    • 3
  • Karen A. Bunting
    • 4
  • Laura A. Moody
    • 1
  • Emma J. Smiles
    • 1
  • Jennifer A. Tubby
    • 1
  • Susan J. Bradshaw
    • 1
  • Juliet C. Coates
    • 1
  1. 1.School of BiosciencesUniversity of BirminghamBirminghamUK
  2. 2.IBERSAberystwyth UniversityAberystwythUK
  3. 3.Division of Plant and Crop SciencesUniversity of NottinghamSutton BoningtonUK
  4. 4.Institute of GeneticsUniversity of Nottingham Medical SchoolNottinghamUK

Personalised recommendations