Plant Molecular Biology

, Volume 74, Issue 3, pp 293–305 | Cite as

Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana

Article

Abstract

The expression of eukaryotic genes from their cognate promoters is often regulated by the action of transcriptional enhancer elements that function in an orientation-independent manner either locally or at a distance within a genome. This interactive nature often provokes unexpected interference within transgenes in plants, as reflected by misexpression of the introduced gene and undesired phenotypes in transgenic lines. To gain a better understanding of the mechanism underlying enhancer/promoter interactions in a plant system, we analyzed the activation of a β-glucuronidase (GUS) reporter gene by enhancers contained within the AGAMOUS second intron (AGI) and the Cauliflower Mosaic Virus (CaMV) 35S promoter, respectively, in the presence and absence of a target promoter. Our results indicate that both the AGI and 35S enhancers, which differ significantly in their species of origin and in the pattern of expression that they induce, have the capacity to activate the expression of a nearby gene through the promoter-independent initiation of autonomous transcriptional events. Furthermore, we provide evidence that the 35S enhancer utilizes a mechanism resembling animal- and yeast-derived scanning or facilitated tracking models of long-distance enhancer action in its activation of a remote target promoter.

Keywords

Enhancer 35S promoter AGAMOUS second intron Transcription initiation Long-distance activation of gene expression Arabidopsis thaliana 

Notes

Acknowledgments

The authors wish to thank Mr. Dennis Bennett (USDA-ARS, Kearneysville, WV) for his technical assistance. This study was funded by the USDA-ARS Headquarter 2007 class of postdoctoral grants and a USDA CSREES BRAG grant (2006-03701).

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi: 10.1126/science.1086391 CrossRefPubMedGoogle Scholar
  2. Banerji J, Rusconi S, Schaffner W (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 2:299–308CrossRefGoogle Scholar
  3. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721CrossRefPubMedGoogle Scholar
  4. Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281:60–63. doi: 10.1126/science.281.5373.60 CrossRefPubMedGoogle Scholar
  5. Bondarenko VA, Liu YV, Jiang YI, Studitsky VM (2003) Communication over a large distance: enhancers and insulators. Biochem Cell Biol 81:241–251. doi: 10.1139/O03-051 CrossRefPubMedGoogle Scholar
  6. Broders F, Scherrer K (1987) Transcription of the alpha globin gene domain in normal and AEV-transformed chicken erythroblasts: mapping of giant globin-specific RNA including embryonic and adult genes. Mol Gen Genet 209:210–220. doi: 10.1007/BF00329645 CrossRefPubMedGoogle Scholar
  7. Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13:2465–2477CrossRefPubMedGoogle Scholar
  8. Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587. doi: 10.1126/science.285.5427.585 CrossRefPubMedGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  10. Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810CrossRefPubMedGoogle Scholar
  11. Dobi KC, Winston F (2007) Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 27:5575–5586. doi: 10.1128/MCB.00459-07 CrossRefPubMedGoogle Scholar
  12. Donoghue M, Ernst H, Wentworth B, Nadal-Ginard B, Rosenthal N (1988) A muscle-specific enhancer is located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev 2:1779–1790. doi: 10.1101/gad.2.12b.1779 CrossRefPubMedGoogle Scholar
  13. Dorsett D (1999) Distant liaisons: long-range enhancer–promoter interactions in Drosophila. Curr Opin Genet Dev 9:505–514. doi: 10.1016/S0959-437X(99)00002-7 CrossRefPubMedGoogle Scholar
  14. Drewell RA, Bae E, Burr J, Lewis EB (2002) Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc Natl Acad Sci USA 99:16853–16858. doi: 10.1073/pnas.222671199 CrossRefPubMedGoogle Scholar
  15. Emerson BM, Nickol JM, Jackson PD, Felsenfeld G (1987) Analysis of the tissue-specific enhancer at the 3′ end of the chicken adult β-globin gene. Proc Natl Acad Sci USA 84:4786–4790CrossRefPubMedGoogle Scholar
  16. Fiering S, Whitelaw E, Martin DIK (2000) To be or not to be active: the stochastic nature of enhancer action. Bioessays 22:381–387CrossRefPubMedGoogle Scholar
  17. Gillies SD, Morrison SL, Oi VT, Tonegawa S (1983) A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobin heavy chain gene. Cell 33:717–728CrossRefPubMedGoogle Scholar
  18. Hatzis P, Talianidis I (2002) Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol Cell 10:1467–1477. doi: 10.1016/1097-2765(02)00786-4 CrossRefPubMedGoogle Scholar
  19. Hily JM, Liu Z (2009) A simple and sensitive high-throughput GFP screening in woody and herbaceous plants. Plant Cell Rep 28:493–501. doi: 10.1007/s00299-008-0657-z CrossRefPubMedGoogle Scholar
  20. Hily JM, Singer SD, Yang Y, Liu Z (2009) A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. Plant Cell Rep 28:1095–1104. doi: 10.1007/s00299-009-0700-8 CrossRefPubMedGoogle Scholar
  21. Hinz U, Wolk A, Renkawitz-Pohl R (1992) Ultrabithorax is a regulator of β3 tubulin expression in the Drosophila visceral mesoderm. Development 116:543–554PubMedGoogle Scholar
  22. Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544. doi: 10.1046/j.1365-313X.1998.00151.x CrossRefPubMedGoogle Scholar
  23. Ho Y, Elefant F, Liebhaber SA, Cooke NE (2006) Locus control region transcription plays an active role in long-range gene activation. Mol Cell 23:365–375. doi: 10.1016/j.molcel.2006.05.041 CrossRefPubMedGoogle Scholar
  24. Jack J, Dorsett D, DeLotto Y, Liu S (1991) Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer. Development 113:735–747PubMedGoogle Scholar
  25. Jacquemin P, Oury C, Peers B, Morin A, Belayew A, Martial JA (1994) Characterization of a single strong tissue-specific enhancer downstream from the three human genes encoding placental lactogen. Mol Cell Biol 14:93–103PubMedGoogle Scholar
  26. Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Kumar P, Pental D (2001) The use of a Spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allow high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breeding 8:11–23CrossRefGoogle Scholar
  27. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  28. Kadauke S, Blobel GA (2009) Chromatin loops in gene regulation. Biochim Biophys Acta 1789:17–25. doi: 10.1016:/j.bbagrm.2008.07.002 PubMedGoogle Scholar
  29. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302. doi: 10.1126/science.236.4806.1299 CrossRefPubMedGoogle Scholar
  30. Keaveney M, Struhl K (1998) Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol Cell 1:917–924. doi: 10.1016/S1097-2765(00)80091-X CrossRefPubMedGoogle Scholar
  31. Kim A, Zhao H, Ifrim I, Dean A (2007) β-globin intergenic transcription and histone acetylation dependent on an enhancer. Mol Cell Biol 27:2980–2986. doi: 10.1128/MCB.02337-06 CrossRefPubMedGoogle Scholar
  32. Lescot M, Dehais P, Moreau Y, De Moor B, Rouze P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327CrossRefPubMedGoogle Scholar
  33. Ling J, Ainol L, Zhang L, Yu X, Pi W, Tuan D (2004) HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem 279:51704–51713. doi: 10.1074/jbc.M404039200 CrossRefPubMedGoogle Scholar
  34. Ling J, Baibakov B, Pi W, Emerson BM, Tuan D (2005) The HS2 enhancer of the β-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J Mol Biol 350:883–896. doi: 10.1016/j.jmb.2005.05.039 CrossRefPubMedGoogle Scholar
  35. Liu Z, Liu Z (2008) The second intron of AGAMOUS drives carpel- and stamen-specific expression sufficient to induce complete sterility in Arabidopsis. Plant Cell Rep 27:855–863. doi: 10.1007/s00299-008-0511-3 CrossRefPubMedGoogle Scholar
  36. Louie MC, Yang HQ, Ma AH, Xu W, Zou JX, Kung HJ, Chen HW (2003) Androgen-induced recruitment of RNA polymerase II to a nuclear receptor-p160 coactivator complex. Proc Natl Acad Sci USA 100:2226–2230. doi: 10.1073/pnas.0437824100 CrossRefPubMedGoogle Scholar
  37. Masternak K, Peyraud N, Krawczyk M, Barras E, Reith W (2003) Chromatin remodeling and extragenic transcription at the MHC class II locus control region. Nat Immunol 4:132–137. doi: 10.1038/ni883 CrossRefPubMedGoogle Scholar
  38. Morris JR, Chen J-I, Geyer PK, Wu C-T (1998) Two modes of transvection: enhancer action in trans and bypass of a chromatin insulator in cis. Proc Natl Acad Sci USA 95:10740–10745CrossRefPubMedGoogle Scholar
  39. Müller H-P, Matthias P, Schaffner W (1990) A transcriptional terminator between enhancer and promoter does not affect remote transcriptional control. Somat Cell Mol Genet 16:351–360. doi: 10.1007/BF01232463 CrossRefPubMedGoogle Scholar
  40. Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386:569–577. doi: 10.1038/386569a0 CrossRefPubMedGoogle Scholar
  41. Razin S, Rynditch A, Borunova V, Ioudinkova E, Smalko V, Scherrer K (2004) The 33 kb transcript of the chicken α-globin gene domain is part of the nuclear matrix. J Cell Biochem 92:445–457. doi: 10.1002/jcb.20066 CrossRefPubMedGoogle Scholar
  42. Rippe K, von Hippel PH, Langowski J (1995) Action at a distance: DNA-looping and initiation of transcription. Trends Biochem Sci 20:500–506. doi: 10.1016/S0968-0004(00)89117-3 CrossRefPubMedGoogle Scholar
  43. Rogan DF, Cousins DJ, Santangelo S, Ioannou PA, Antoniou M, Lee TH, Staynov DZ (2004) Analysis of intergenic transcription in the human IL-4/IL-13 gene cluster. Proc Natl Acad Sci USA 101:2446–2451. doi: 10.1073/pnas.0308327100 CrossRefPubMedGoogle Scholar
  44. Rosenthal N, Berglund EB, Wentworth BM, Donoghue M, Winter B, Bober E, Braun T, Arnold H-H (1990) A highly conserved enhancer downstream of the human MLC1/3 locus is a target for multiple myogenic determination factors. Nucleic Acids Res 18:6239–6246CrossRefPubMedGoogle Scholar
  45. Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259. doi: 10.1023/B:PLAN.0000009297.37235.4a CrossRefPubMedGoogle Scholar
  46. Routledge SJE, Proudfoot NJ (2002) Definition of transcriptional promoters in the human β-globin locus control region. J Mol Biol 323:601–611. doi: 10.1016/S0022-2836(02)01011-2 CrossRefPubMedGoogle Scholar
  47. Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721–733CrossRefPubMedGoogle Scholar
  48. Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610. doi: 10.1016/S1097-2765(03)00237-5 CrossRefPubMedGoogle Scholar
  49. Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365CrossRefPubMedGoogle Scholar
  50. Singer SD, Hily J-M, Liu Z (2010) A 1 kb bacteriophage lambda fragment functions as an insulator to effectively block enhancer–promoter interactions in Arabidopsis thaliana. Plant Mol Biol Rep 28:69–76. doi: 10.1007/s11105-009-0122-3 CrossRefGoogle Scholar
  51. Smith DL, Fedoroff NV (1995) LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7:735–745CrossRefPubMedGoogle Scholar
  52. Spicuglia S, Kumar S, Yeh JH, Vachez E, Chasson L, Gorbatch S, Cautres J, Ferrier P (2002) Promoter activation by enhancer-dependent and-independent loading of activator and coactivator complexes. Mol Cell 10:1479–1487. doi: 10.1016/S1097-2765(02)00791-8 CrossRefPubMedGoogle Scholar
  53. Sutherland HGE, Martin DIK, Whitelaw E (1997) A globin enhancer acts by increasing the proportion of erythrocytes expressing a linked transgene. Mol Cell Biol 17:1607–1614PubMedGoogle Scholar
  54. Tchurikov NA, Kretova OV, Moiseeva ED, Sosin DV (2009) Evidence for RNA synthesis in the intergenic region between enhancer and promoter and its inhibition by insulators in Drosophila melanogaster. Nucleic Acids Res 37:111–122. doi: 10.1093/nar/gkn926 CrossRefPubMedGoogle Scholar
  55. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10:1453–1465. doi: 10.1016/S1097-2765(02)00781-5 CrossRefPubMedGoogle Scholar
  56. Travers A (1999) Chromatin modification by DNA tracking. Proc Natl Acad Sci USA 96:13634–13637CrossRefPubMedGoogle Scholar
  57. Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89:11219–11223CrossRefPubMedGoogle Scholar
  58. Walters MC, Fiering S, Eidemiller J, Magis W, Groudine M, Martin DIK (1995) Enhancers increase the probability but not the level of gene expression. Proc Natl Acad Sci USA 92:7125–7129CrossRefPubMedGoogle Scholar
  59. Wang Q, Carroll J, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642. doi: 10:1016/j.molcel.2005.07.018 CrossRefPubMedGoogle Scholar
  60. Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26:1195–1203. doi: 10.1007/s00299-007-0307-x CrossRefPubMedGoogle Scholar
  61. Zhu X, Ling J, Zhang L, Pi W, Wu M, Tuan D (2007) A facilitated tracking and transcription mechanism of long-range enhancer function. Nucleic Acids Res 35:5532–5544. doi: 10.1093/nar/gkm595 CrossRefPubMedGoogle Scholar

Copyright information

© U.S. Government 2010

Authors and Affiliations

  • Stacy D. Singer
    • 1
    • 2
  • Kerik D. Cox
    • 2
  • Zongrang Liu
    • 1
  1. 1.USDA-ARS Appalachian Fruit Research StationKearneysvilleUSA
  2. 2.Department of Plant Pathology, New York State Agricultural Experiment StationCornell UniversityGenevaUSA

Personalised recommendations