Advertisement

Plant Molecular Biology

, Volume 73, Issue 6, pp 673–685 | Cite as

Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions

  • Hanane Ennajdaoui
  • Gilles Vachon
  • Cécile Giacalone
  • Isabelle Besse
  • Christophe Sallaud
  • Michel Herzog
  • Alain Tissier
Article

Abstract

Tobacco (Nicotiana sylvestris) glandular trichomes make an attractive target for isoprenoid metabolic engineering because they produce large amounts of one type of diterpenoids, α- and β-cembratrien-diols. This article describes the establishment of tools for metabolic engineering of tobacco trichomes, namely a transgenic line with strongly reduced levels of diterpenoids in the exudate and the characterization of a trichome specific promoter. The diterpene-free tobacco line was generated by silencing the major tobacco diterpene synthases, which were found to be encoded by a family of four highly similar genes (NsCBTS-2a, NsCBTS-2b, NsCBTS-3 and NsCBTS-4), one of which is a pseudogene. The promoter regions of all four CBTS genes were sequenced and found to share over 95% identity between them. Transgenic plants expressing uidA under the control of the NsCBTS-2a promoter displayed a specific pattern of GUS expression restricted exclusively to the glandular cells of the tall secretory trichomes. A series of sequential and internal deletions of the NsCBTS-2a promoter led to the identification of two cis-acting regions. The first, located between positions -589 to -479 from the transcription initiation site, conferred a broad transcriptional activation, not only in the glandular cells, but also in cells of the trichome stalk, as well as in the leaf epidermis and the root. The second region, located between positions -279 to -119, had broad repressor activity except in trichome glandular cells and is mainly responsible for the specific expression pattern of the NsCBTS-2a gene. These results establish the basis for the identification of trans-regulators required for the expression of the CBTS genes restricted to the secretory cells of the glandular trichomes.

Keywords

Glandular trichomes Promoter Terpene biosynthesis cis-regulatory regions Tobacco Intron hairpin 

Notes

Acknowledgments

We acknowledge the support of the Agence Nationale de la Recherche (programme Réseau Innovation Biotechnologies 2005), grant number ANR-05-PRIB02102 to AT and MH. We wish to thank the Groupement de Recherches Appliquées en Phytotechnologies of the CEA Cadarache for assistance in growing the plants.

Supplementary material

11103_2010_9648_MOESM1_ESM.ppt (240 kb)
Supplementary material 1 (PPT 240 kb)
11103_2010_9648_MOESM2_ESM.doc (125 kb)
Supplementary material 2 (DOC 125 kb)

References

  1. Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761CrossRefPubMedGoogle Scholar
  2. Delaney SK, Orford SJ, Martin-Harris M, Timmis JN (2007) The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1. Plant Cell Physiol 48:1426–1437CrossRefPubMedGoogle Scholar
  3. Fang R-X, Nagy F, Sivasubramaniam S, Chua N-H (1989) Multiple cis-regulatory elements required for maximal expression of the Cauliflower Mosaic Virus 35S promoter in transgenic plants. Plant Cell 1:41–150CrossRefGoogle Scholar
  4. Gallagher SR (ed) (1992) Quantitation of GUS activity by fluorometry. Academic Press Inc., San Diego, pp 47–59Google Scholar
  5. Guo ZH, Severson RF, Wagner GJ (1994) Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes. Arch Biochem Biophys 308:103–108CrossRefPubMedGoogle Scholar
  6. Gutierrez-Alcala G, Calo L, Gros F, Caissard J-C, Gotor C, Romero LC (2005) A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. J Exp Bot 56:2487–2494CrossRefPubMedGoogle Scholar
  7. Hsu CY, Creech RG, Jenkins JN, Ma DP (1999) Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Sci 143:63–70CrossRefGoogle Scholar
  8. Hsu CY, Jenkins JN, Saha S, Ma DP (2005) Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein. Plant Sci 168:167–181CrossRefGoogle Scholar
  9. Kandra L, Wagner GJ (1988) Studies of the site and mode of biosynthesis of tobacco trichome exudate components. Arch Biochem Biophys 265:425–432CrossRefPubMedGoogle Scholar
  10. Keene CK, Wagner GJ (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Phys 79:1026–1032CrossRefGoogle Scholar
  11. Lange BM, Croteau R (1999) Genetic engineering of essential oil production in mint. Current Opin Plant Biol 2:139–144CrossRefGoogle Scholar
  12. Liu HC, Creech RG, Jenkins JN, Ma DP (2000) Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Bioch Biophys Act 1487:106–111Google Scholar
  13. Liu J, Xia KF, Zhu JC, Deng YG, Huang XL, Hu BL, Xu XP, Xu ZF, Liu J, Xia KF, Zhu JC, Deng YG, Huang XL, Hu BL, Xu XP, Xu ZF (2006) The nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes. Plant Cell Phys 47:1274–1284CrossRefGoogle Scholar
  14. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373CrossRefPubMedGoogle Scholar
  15. Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway Spruce TPS genes and evolution of Gymnosperm Terpene Synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927CrossRefPubMedGoogle Scholar
  16. Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283:6067–6075CrossRefPubMedGoogle Scholar
  17. Ruan MB, Liao WB, Zhang XC, Yu XL, Peng M (2009) Analysis of the cotton sucrose synthase 3 (Sus3) promoter and first intron in transgenic Arabidopsis. Plant Sci 176:342–351CrossRefGoogle Scholar
  18. Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A Novel Pathway for Sesquiterpene Biosynthesis from Z, Z-Farnesyl Pyrophosphate in the Wild Tomato Solanum habrochaites. Plant Cell 21:301–317CrossRefPubMedGoogle Scholar
  19. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711CrossRefPubMedGoogle Scholar
  20. Shangguan X-X, Xu B, Yu Z-X, Wang L-J, Chen X-Y (2008) Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot 59:3533–3542CrossRefPubMedGoogle Scholar
  21. Siebert PD, Chenchick A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088CrossRefPubMedGoogle Scholar
  22. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320CrossRefPubMedGoogle Scholar
  23. Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731CrossRefPubMedGoogle Scholar
  24. Van Der Hoeven RS, Monforte AJ, Breeden D, Tanksley SD, Steffens JC (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294CrossRefGoogle Scholar
  25. Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679CrossRefPubMedGoogle Scholar
  26. Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11CrossRefPubMedGoogle Scholar
  27. Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–691PubMedGoogle Scholar
  28. Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotech 19:371–374CrossRefGoogle Scholar
  29. Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897CrossRefPubMedGoogle Scholar
  30. Wang EM, Hall JT, Wagner GJ (2004) Transgenic Nicotiana Tabacum L. with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field. Mol Breed 13:49–57CrossRefGoogle Scholar
  31. Wu AM, Liu JY (2006) Isolation of the promoter of a cotton beta-galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. Sci Chin Ser C-Life Sci 49:105–114CrossRefGoogle Scholar
  32. Wu AM, Ling C, Liu JY (2006) Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Phys 163:426–435CrossRefGoogle Scholar
  33. Wu AM, Lv SY, Liu JY (2007) Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos. Cell Res 17:174–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hanane Ennajdaoui
    • 1
    • 4
  • Gilles Vachon
    • 2
  • Cécile Giacalone
    • 3
    • 6
  • Isabelle Besse
    • 3
  • Christophe Sallaud
    • 3
    • 7
  • Michel Herzog
    • 1
  • Alain Tissier
    • 3
    • 5
  1. 1.Laboratoire d’Ecologie AlpineUniversité Joseph Fourier and CNRS—Unité Mixte de Recherche 5553Grenoble Cedex 9France
  2. 2.Laboratoire de Physiologie Cellulaire VégétaleUniversité Joseph Fourier—Unité Mixte de Recherche 5168 CNRS/CEA/INRA/UJF—CEAGrenoble Cedex 9France
  3. 3.Librophyt, Centre de CadaracheSaint Paul-lez-DuranceFrance
  4. 4.Molecular Cell & Developmental Biology DepartmentSinsheimer LaboratoriesSanta CruzUSA
  5. 5.Institut de Recherche pour le DéveloppementUniversité Montpellier 2—Unité Mixte de Recherche Diversité et Adaptation des Plantes CultivéesMontpellier Cedex 5France
  6. 6.Laboratoire Echanges Membranaires et Signalisation, Institut de Biologie Environnementale et de BiotechnologieCommissariat à l’Energie AtomiqueSaint Paul Lez Durance CedexFrance
  7. 7.Functional and Applied Cereal Group, Biogemma, Z.I. du BrezetClermont-Ferrand Cedex 2France

Personalised recommendations