Plant Molecular Biology

, Volume 73, Issue 4–5, pp 449–465 | Cite as

Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human



Helicases are motor proteins which can catalyze the unwinding of stable RNA or DNA duplex utilizing mainly ATP as source of energy. In this study we have identified complete sets of helicases from rice and Arabidopsis. The helicase gene family in rice and Arabidopsis contains 115 and 113 genes respectively. These helicases were validated based on their annotations and supported with organization of conserved helicase signature motifs. We have also identified homologs of 64 rice RNA and DNA helicases in Arabidopsis, yeast and human. We explored Arabidopsis oligonucleotide array data to gain functional insights into the transcriptome of helicase family members under ten different stress conditions. Our results revealed that expression of helicase genes is profoundly regulated under various stress conditions. The helicases identified in this study lay a foundation for the in depth characterization of each helicase type.


Abiotic stress DEAD-box proteins Helicase motifs Protein alignment Sequence LOGO Transcriptomics 



Work on helicases and plant stress tolerance in N.T.’s laboratory is supported partially by the Department of Science and Technology (DST), Government of India and Department of Biotechnology (DBT), Government of India.

Supplementary material

11103_2010_9632_MOESM1_ESM.doc (269 kb)
Supplementary material 1 (DOC 269 kb)


  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefPubMedGoogle Scholar
  3. Aubourg S, Kreis M, Lecharny A (1999) The DEAD-box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 27:628–636CrossRefPubMedGoogle Scholar
  4. Bennetzen J (2002) The rice genome. Opening the door to comparative plant biology. Science 296:60–63CrossRefPubMedGoogle Scholar
  5. Bernstein DA, Zittel MC, Keck JL (2003) High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J 22:4910–4921CrossRefPubMedGoogle Scholar
  6. Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A (2001) Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 11:2101–2114CrossRefPubMedGoogle Scholar
  7. Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadia M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci USA 105:20191–20196CrossRefPubMedGoogle Scholar
  8. Cho WK, Geimer S, Meurer J (2009) Cluster analysis and comparison of various chloroplast transcriptomes and genes in Arabidopsis thaliana. DNA Res 16:31–44CrossRefPubMedGoogle Scholar
  9. Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37CrossRefPubMedGoogle Scholar
  10. Dalmay T, Horsefield R, Braunstein TH, Baulcombe DC (2001) SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J 20:2069–2077CrossRefPubMedGoogle Scholar
  11. de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198CrossRefGoogle Scholar
  12. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868CrossRefPubMedGoogle Scholar
  13. Finn RD, Tate J, Mistry J, Coggill PC, Sammut JS, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288CrossRefPubMedGoogle Scholar
  14. Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefPubMedGoogle Scholar
  15. Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512CrossRefPubMedGoogle Scholar
  16. Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD-box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267CrossRefPubMedGoogle Scholar
  17. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationship. Curr Opin Struct Biol 3:419–429CrossRefGoogle Scholar
  18. Hartung F, Plchova H, Puchta H (2000) Molecular characterization of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res 28:4275–4282CrossRefPubMedGoogle Scholar
  19. Holding DR, Springer PS (2002) The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214:373–382CrossRefPubMedGoogle Scholar
  20. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 420747Google Scholar
  21. Jankowsky E, Fairman ME (2007) RNA helicases–one fold for many functions. Curr Opin Struct Biol 17:316–324CrossRefPubMedGoogle Scholar
  22. Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRS1 and STRS2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stress. Plant Physiol 145:814–830CrossRefPubMedGoogle Scholar
  23. Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49:1563–1571CrossRefPubMedGoogle Scholar
  24. Kobbe D, Blanck S, Demand K, Focke M, Puchta H (2008) AtRECQ2, a RecQ helicase homologue from Arabidopsis thaliana, is able to disrupt various recombinogenic DNA structures in vitro. Plant J 55:397–405CrossRefPubMedGoogle Scholar
  25. Kobbe D, Blanck S, Focke M, Puchta H (2009) Biochemical characterization of AtRECQ3 reveals significant differences relative to other RecQ helicases. Plant Physiol 151:1658–1666CrossRefPubMedGoogle Scholar
  26. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306CrossRefPubMedGoogle Scholar
  27. Linder P (2006) Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180CrossRefPubMedGoogle Scholar
  28. Linder P, Owttrim GW (2009) Plant RNA helicases: linking aberrant and silencing RNA. Trends Plant Sci 14:344–352CrossRefPubMedGoogle Scholar
  29. Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF (2008) Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J Exp Bot 59:633–644CrossRefPubMedGoogle Scholar
  30. Liu Y, Richards TA, Aves SJ (2009) Ancient diversification of eukaryotic MCM DNA replication proteins. MBC Evol Biol 9:60CrossRefGoogle Scholar
  31. Lorsch JR (2002) RNA chaperones exist and DEAD-box proteins get a life. Cell 109:797–800CrossRefPubMedGoogle Scholar
  32. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158CrossRefPubMedGoogle Scholar
  33. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperon-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43PubMedGoogle Scholar
  34. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887CrossRefPubMedGoogle Scholar
  35. Owttrim GW (2006) RNA helicases and abiotic stress. Nucleic Acids Res 34:3220–3230CrossRefPubMedGoogle Scholar
  36. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495CrossRefPubMedGoogle Scholar
  37. Pause A, Methot N, Sonenberg N (1993) The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cell Biol 13:6789–6798PubMedGoogle Scholar
  38. Pennacchio LA (2003) Insights from human/mouse genome comparisons. Mamm Genome 14:429–436CrossRefPubMedGoogle Scholar
  39. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  40. Pike ACW, Shrestha B, Popuri V, Burgess-Brown Muzzolini L, Costantini S, Vindigni A, Gileadi O (2009) Structure of the human RECQ1 helicase reveals a putative strand-separation pin. Proc Natl Acad Sci USA 106:1039–1044CrossRefPubMedGoogle Scholar
  41. Poole RL (2007) The TAIR database. Methods Mol Biol 406:179–212CrossRefPubMedGoogle Scholar
  42. Sabelli PA, Burgess SR, Kush AK, Young MR, Shewry PR (1996) cDNA cloning and characterization of a maize homologue of the MCM proteins required for the initiation of DNA replication. Mol Gen Genet 252:125–136CrossRefPubMedGoogle Scholar
  43. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  44. Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 over expression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514CrossRefPubMedGoogle Scholar
  45. Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6:283–291CrossRefPubMedGoogle Scholar
  46. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100CrossRefPubMedGoogle Scholar
  47. Schuster-Böckler B, Schultz J, Rahmann S (2004) HMM Logos for visualization of protein families. BMC Bioinformatics 5:7CrossRefPubMedGoogle Scholar
  48. Shultz RW, Lee T-J, Allen GC, Thompson WF, Hanley-Bowdoin L (2009) Dynamic localization of the DNA replication proteins MCM5 and MCM7 in plants. Plant Physiol 150:658–669CrossRefPubMedGoogle Scholar
  49. Soukas A, Cohen P, Socci ND, Friedman JM (2000) Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 15:963–980Google Scholar
  50. Springer PS, McCombie WR, Sundaresan V, Martienssen RA (1995) Gene trap tagging of PROLIFERA an essential MCM2–3-5-like gene in Arabidopsis. Science 268:877–880CrossRefPubMedGoogle Scholar
  51. Springer PS, Holding DR, Groover A, Yordan C, Martienssen RA (2000) The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development. Development 127:1815–1822PubMedGoogle Scholar
  52. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208CrossRefPubMedGoogle Scholar
  53. Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262CrossRefPubMedGoogle Scholar
  54. Tuteja N (2003) Plant DNA helicases, the long unwinding road. J Exp Bot 54:2201–2214CrossRefPubMedGoogle Scholar
  55. Tuteja R (2010) Genome wide identification of Plasmodium falciparum helicases: a comparison with human host. Cell Cycle 9:104–120PubMedGoogle Scholar
  56. Tuteja N, Tuteja R (2004a) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848CrossRefPubMedGoogle Scholar
  57. Tuteja N, Tuteja R (2004b) Unravelling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863CrossRefPubMedGoogle Scholar
  58. Ursic D, Himmel KL, Gurley KA, Webb F, Culbertson MR (1997) The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res 25:4778–4785CrossRefPubMedGoogle Scholar
  59. Vashisht AA, Tuteja N (2005) Cold stress-induced pea DNA helicase 47 is homologous to eIF4A and inhibited by DNA-interacting ligands. Arch Biochem Biophys 440:79–90CrossRefPubMedGoogle Scholar
  60. Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases, a new pathway to engineer plant stress tolerance. J Photochem Photobiol B 84:150–160CrossRefPubMedGoogle Scholar
  61. Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005) Cold and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44:76–87CrossRefPubMedGoogle Scholar
  62. Vincentz M, Cara FA, Okura VK, da Silva FR, Pedrosa GL et al (2004) Evaluation of monocot and eudicot divergence using the sugarcane transcriptome. Plant Physiol 134:951–959CrossRefPubMedGoogle Scholar
  63. Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRefPubMedGoogle Scholar
  64. Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa. A history of duplications. PLoS Biol 3:266–281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Plant Molecular Biology GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia

Personalised recommendations