Advertisement

Plant Molecular Biology

, Volume 72, Issue 4–5, pp 445–457 | Cite as

Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant

  • Troy N. PaddockEmail author
  • Mary E. Mason
  • Daniel F. Lima
  • Gregory A. Armstrong
Article

Abstract

In angiosperms the strictly light-dependent reduction of protochlorophyllide to chlorophyllide is catalyzed by NADPH:protochlorophyllide oxidoreductase (POR). The Arabidopsis thaliana genome encodes three structurally related but differentially regulated POR genes, PORA, PORB and PORC. PORA is expressed primarily early in development—during etiolation, germination and greening. In contrast, PORB and PORC are not only expressed during seedling development but also throughout the later life of the plant, during which they are responsible for bulk chlorophyll synthesis. The Arabidopsis porB-1 porC-1 mutant displays a severe xantha (highly chlorophyll-deficient) phenotype characterized by smaller prolamellar bodies in etioplasts and decreased thylakoid stacking in chloroplasts. Here we have demonstrated the ability of an ectopic PORA overexpression construct to restore prolamellar body formation in the porB-1 porC-1 double mutant background. In response to illumination, light-dependent chlorophyll production, thylakoid stacking and photomorphogenesis are also restored in PORA-overexpressing porB-1 porC-1 seedlings and adult plants. An Arabidopsis porB-1 porC-1 double mutant can therefore be functionally rescued by the addition of ectopically expressed PORA, which suffices in the absence of either PORB or PORC to direct bulk chlorophyll synthesis and normal plant development.

Keywords

NADPH:protochlorophyllide oxidoreductase PORA PORB PORC Prolamellar body Photomorphogenesis Chlorophyll 

Notes

Acknowledgments

We thank Rosario Barbieri for her advice, Rebecca Lamb and Patrice Hamel for their comments, Kathy Wolken at The Ohio State University Campus Microscopy and Imaging Facility for assistance with the electron microscopy, Dick Sayre for providing access to the fluorescence spectrophotometer, and the Nottingham Arabidopsis Stock Centre (Nottingham, UK) and The Arabidopsis Biological Resource Center (Columbus, OH, USA) for the generous donation of seed lines.

References

  1. Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517CrossRefPubMedGoogle Scholar
  2. Armstrong GA, Apel K, Rüdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5:40–44CrossRefPubMedGoogle Scholar
  3. Franck F, Sperling U, Frick G, Pochert B, van Cleve B, Apel K, Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124:1678–1696CrossRefPubMedGoogle Scholar
  4. Frick G, Su Q, Apel K, Armstrong GA (2003) An arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35:141–153CrossRefPubMedGoogle Scholar
  5. Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H, Takamiya K (2000) NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64:147–154CrossRefPubMedGoogle Scholar
  6. Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692PubMedGoogle Scholar
  7. Heyes DJ, Hunter CN (2005) Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 30:642–649CrossRefPubMedGoogle Scholar
  8. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258CrossRefPubMedGoogle Scholar
  9. Iwamoto K, Fukuda H, Sugiyama M (2001) Elimination of POR expression correlates with red leaf formation in Amaranthus tricolor. Plant J 27:275–284CrossRefPubMedGoogle Scholar
  10. Kim C, Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16:88–98CrossRefPubMedGoogle Scholar
  11. Kim C, Ham H, Apel K (2005) Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of arabidopsis seedlings. Plant J 42:329–340CrossRefPubMedGoogle Scholar
  12. Lebedev N, Timko MP (1998) Protochlorophyllide photoreduction. Photosynth Res 58:5–23CrossRefGoogle Scholar
  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  14. Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29CrossRefPubMedGoogle Scholar
  15. Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H, Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74:165–172CrossRefPubMedGoogle Scholar
  16. Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974CrossRefPubMedGoogle Scholar
  17. Matringe M, Camadro JM, Labbe P, Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231–235PubMedGoogle Scholar
  18. Melkozernov AN, Barber J, Blankenship RE (2006) Light harvesting in photosystem I supercomplexes. Biochemistry 45:331–345CrossRefPubMedGoogle Scholar
  19. Mock H, Keetman U, Kruse E, Rank B, Grimm B (1998) Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiol 116:107–116CrossRefGoogle Scholar
  20. Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J (2007) Chloroplast biogenesis: the use of mutants to study the etioplast-chloroplast transition. Proc Natl Acad Sci USA 104:678–683CrossRefPubMedGoogle Scholar
  21. Pollmann S, Springer A, Buhr F, Lahroussi A, Samol I, Bonneville JM, Tichtinsky G, von Wettstein D, Reinbothe C, Reinbothe S (2007) A plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 104:2019–2023CrossRefPubMedGoogle Scholar
  22. Reinbothe S, Reinbothe C, Apel K, Lebedev N (1996) Evolution of chlorophyll biosynthesis–the challenge to survive photooxidation. Cell 86:703–705CrossRefPubMedGoogle Scholar
  23. Reinbothe C, Lebedev N, Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397:80–84CrossRefGoogle Scholar
  24. Reinbothe S, Pollmann S, Springer A, James RJ, Tichtinsky G, Reinbothe C (2005) A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH:protochlorophyllide oxidoreductase (POR) A. Plant J 42:1–12CrossRefPubMedGoogle Scholar
  25. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J Cell Biol 17:208–212CrossRefPubMedGoogle Scholar
  26. Rosinski J, Rosen WG (1972) Chloroplast development: fine structure and chlorophyll synthesis. Q Rev Biol 47:160–191CrossRefGoogle Scholar
  27. Runge S, Sperling U, Frick G, Apel K, Armstrong GA (1996) Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. Plant J 9:513–523CrossRefPubMedGoogle Scholar
  28. Sanda S, Amasino RM (1995) Genetic and physiological analysis of flowering time in the C24 line of Arabidopsis thaliana. Weeds World 2:2–8Google Scholar
  29. Selstam E, Sandelius AS (1984) A comparison between prolamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat concerning lipid and polypeptide composition. Plant Physiol 76:1036–1040CrossRefPubMedGoogle Scholar
  30. Selstam E, Schelin J, Brain T, Williams WP (2002) The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). Eur J Biochem 269:2336–2346CrossRefPubMedGoogle Scholar
  31. Solymosi K, Martinez K, Kristof Z, Sundqvist C, Boddi B (2004) Plastid differentiation and chlorophyll biosynthesis in different leaf layers of white cabbage (Brassica oleracea cv. capitata). Physiol Plantarum 121:520–529CrossRefGoogle Scholar
  32. Solymosi K, Smeller L, Ryberg M, Sundqvist C, Fidy J, Boddi B (2007) Molecular rearrangement in POR macrodomains as a reason for the blue shift of chlorophyllide fluorescence observed after phototransformation. Biochim Biophys Acta 1768:1650–1658CrossRefPubMedGoogle Scholar
  33. Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972CrossRefPubMedGoogle Scholar
  34. Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658CrossRefPubMedGoogle Scholar
  35. Sperling U, Franck F, van Cleve B, Frick G, Apel K, Armstrong GA (1998) Etioplast differentiation in arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296CrossRefPubMedGoogle Scholar
  36. Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813CrossRefPubMedGoogle Scholar
  37. Teakle GR, Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296:225–230PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Troy N. Paddock
    • 1
    Email author
  • Mary E. Mason
    • 1
    • 2
  • Daniel F. Lima
    • 1
  • Gregory A. Armstrong
    • 1
  1. 1.Department of Plant Cellular and Molecular BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of EntomologyOhio Agricultural Research and Development CenterWoosterUSA

Personalised recommendations