Plant Molecular Biology

, Volume 71, Issue 6, pp 585–597 | Cite as

An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris

  • Torsten Wenke
  • Daniela Holtgräwe
  • Axel V. Horn
  • Bernd Weisshaar
  • Thomas Schmidt


We describe a non-LTR retrotransposon family, BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition, eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 5′ truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 3′ end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences.


Beta vulgaris Sugar beet Long interspersed nuclear elements Non-LTR retrotransposon Fluorescent in situ hybridization 


  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  2. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269CrossRefPubMedGoogle Scholar
  3. Birney E, Clamp M, Durbin R (2004) GeneWise and genomewise. Genome Res 14:988–995CrossRefPubMedGoogle Scholar
  4. Desel C, Jung C, Cai D, Kleine M, Schmidt T (2001) High-resolution mapping of YACs and the single-copy gene Hs1(pro-1) on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Mol Biol 45:113–122CrossRefPubMedGoogle Scholar
  5. Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808CrossRefPubMedGoogle Scholar
  6. Fischer HE (1989) Origin of the “Weiße Schlesische Rübe” (white Silesian beet) and resynthesis of sugar beet. Euphytica 41:75–80CrossRefGoogle Scholar
  7. Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269CrossRefPubMedGoogle Scholar
  8. Flavell AJ, Pearce SR, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844CrossRefPubMedGoogle Scholar
  9. Gindullis F, Dechyeva D, Schmidt T (2001) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Genome 44:846–855CrossRefPubMedGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis programm for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  11. Hans de Jong J, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4:258–263CrossRefPubMedGoogle Scholar
  12. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261CrossRefPubMedGoogle Scholar
  13. Heitkam T, Schmidt T (2009) BNR – a LINE family from Beta vulgaris contains an RRM domain in open reading frame 1 and defines a L1 subclade present in diverse plant genomes. Plant J. doi: 10.1111/j.1365-1313X.2009.03923.x
  14. Helm J (1957) Versuch einer morphologisch-systematischen Gliederung der Art Beta vulgaris L. Theor Appl Genet 27:203–222CrossRefGoogle Scholar
  15. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919CrossRefPubMedGoogle Scholar
  16. Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636CrossRefPubMedGoogle Scholar
  17. Higashiyama T, Noutoshi Y, Fujie M, Yamada T (1997) Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16:3715–3723CrossRefPubMedGoogle Scholar
  18. Hill P, Burford D, Martin DM, Flavell AJ (2005) Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genomics 273:371–381CrossRefPubMedGoogle Scholar
  19. Hohmann U, Jacobs G, Telgmann A, Gaafar RM, Alam S, Jung C (2003) A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B. Mol Genet Genomics 269:126–136PubMedGoogle Scholar
  20. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  21. Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subfam. Betoidae and notes on the taxonomy of Beta. Willdenowia 36:9–19CrossRefGoogle Scholar
  22. Khan H, Smit A, Boissinot S (2006) Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16:78–87CrossRefPubMedGoogle Scholar
  23. Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944CrossRefPubMedGoogle Scholar
  24. Kubis S, Schmidt T, Heslop-Harrison JS (1998a) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82:45–55CrossRefGoogle Scholar
  25. Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T (1998b) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36:821–831CrossRefPubMedGoogle Scholar
  26. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532CrossRefPubMedGoogle Scholar
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  28. Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381CrossRefPubMedGoogle Scholar
  29. Leeton PRJ, Smyth DR (1993) An abundant line-like element amplified in the genome of Lilium-Speciosum. Mol Gen Genet 237:97–104CrossRefPubMedGoogle Scholar
  30. Letschert JPW (1993) Beta section Beta: biographical patterns of variation and taxonomy. Dissertation 93-1, Wageningen Agricultural UniversityGoogle Scholar
  31. Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA 3rd (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6:168–182PubMedGoogle Scholar
  32. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605CrossRefPubMedGoogle Scholar
  33. Marillonnet S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9:967–978CrossRefPubMedGoogle Scholar
  34. Martin SL, Li WLP, Furano A, Boissinot S (2005) The structures of mouse and human L1 elements reflect their insertion mechanism. Cytogenet Genome Res 110:223–228CrossRefPubMedGoogle Scholar
  35. McGrath JM, Shaw RS, de los Reyes BG, Weiland JJ (2004) Construction of a sugar beet BAC library from a hybrid with diverse traits. Plant Mol Biol Rep 22:23–28CrossRefGoogle Scholar
  36. Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T (2008) Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Ann Bot 102:521–530CrossRefPubMedGoogle Scholar
  37. Morgenstern B (2004) DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucl Acids Res 32:W33–W36CrossRefPubMedGoogle Scholar
  38. Müller J, Müller K (2004) TREEGRAPH: automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes 4:786–788CrossRefGoogle Scholar
  39. Noma K, Ohtsubo E, Ohtsubo H (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet 261:71–79CrossRefPubMedGoogle Scholar
  40. Noma K, Ohtsubo H, Ohtsubo E (2000) ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization. DNA Res 7:291–303CrossRefPubMedGoogle Scholar
  41. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  42. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedGoogle Scholar
  43. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732CrossRefPubMedGoogle Scholar
  44. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  45. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43CrossRefPubMedGoogle Scholar
  46. Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26:3641–3652CrossRefPubMedGoogle Scholar
  47. Schmidt T (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol Biol 40:903–910CrossRefPubMedGoogle Scholar
  48. Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199CrossRefGoogle Scholar
  49. Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88:629–636CrossRefGoogle Scholar
  50. Schmidt T, Kubis S, Heslop-Harrison JS (1995) Analysis and chromosomal localization of retrotransposons in sugar beet (Beta Vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome. Chromosom Res 3:335–345CrossRefGoogle Scholar
  51. Schulte D, Cai DG, Kleine M, Fan LJ, Wang S, Jung C (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol Genet Genomics 275:504–511CrossRefPubMedGoogle Scholar
  52. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers, OxfordGoogle Scholar
  53. Schwarz-Sommer Z, Leclerq L, Goebel E, Saedler H (1987) Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J 6:3873–3880PubMedGoogle Scholar
  54. Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3:1–18CrossRefGoogle Scholar
  55. Thomas CA (1971) Genetic organization of chromosomes. Annu Rev Genet 5:237–256CrossRefPubMedGoogle Scholar
  56. Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179CrossRefPubMedGoogle Scholar
  57. Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS (2002) LINEs and gypsy-like retrotransposons in Hordeum species. Plant Mol Biol 49:1–14CrossRefPubMedGoogle Scholar
  58. Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T (2009) The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution and age. Gene (in press)Google Scholar
  59. Wright DA, Ke N, Smalle J, Hauge BM, Goodman HM, Voytas DF (1996) Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142:569–578PubMedGoogle Scholar
  60. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362PubMedGoogle Scholar
  61. Yamashita H, Tahara M (2006) A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome. Plant Mol Biol 61:79–94CrossRefPubMedGoogle Scholar
  62. Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Kudrna D, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Torsten Wenke
    • 1
  • Daniela Holtgräwe
    • 2
  • Axel V. Horn
    • 1
  • Bernd Weisshaar
    • 2
  • Thomas Schmidt
    • 1
    • 3
  1. 1.Institute of BotanyDresden University of TechnologyDresdenGermany
  2. 2.Institute of Genome ResearchUniversity of BielefeldBielefeldGermany
  3. 3.Department of BiologyDresden University of TechnologyDresdenGermany

Personalised recommendations