Plant Molecular Biology

, Volume 71, Issue 1–2, pp 99–114 | Cite as

Contrasting evolutionary patterns and target specificities among three Tourist-like MITE families in the maize genome

  • Tatiana Zerjal
  • Johann Joets
  • Karine Alix
  • Marie-Angèle Grandbastien
  • Maud I. Tenaillon
Article

Abstract

Miniature inverted-repeat transposable elements (MITEs) are short, non autonomous DNA elements that are widespread and abundant in plant genomes. The high sequence and size conservation observed in many MITE families suggest that they have spread recently throughout their respective host genomes. Here we present a maize genome wide analysis of three Tourist-like MITE families, mPIF, and two previously uncharacterized families, ZmV1 and Zead8. We undertook a bioinformatic analysis of MITE insertion sites, developed methyl-sensitive transposon display (M-STD) assays to estimate the associated level of CpG methylation at MITE flanking regions, and conducted a population genetics approach to investigate MITE patterns of expansion. Our results reveal that the three MITE families insert into genomic regions that present specific molecular features: they are preferentially AT rich, present low level of cytosine methylation as compared to the LTR retrotransposon Grande, and target site duplications are flanked by large and conserved palindromic sequences. Moreover, the analysis of MITE distances from predicted genes shows that 73% of 263 copies are inserted at less than 5 kb from the nearest predicted gene, and copies from Zead8 family are significantly more abundant upstream of genes. By employing a population genetic approach we identified contrasting patterns of expansion among the three MITE families. All elements seem to have inserted roughly 1 million years ago but ZmV1 and Zead8 families present evidences for activity of several master copies within the last 0.4 Mya.

Keywords

Maize MITE Tourist-like M-STD Methylation Evolution 

Supplementary material

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  3. Bennetzen JL, Schrick K, Springer PS, Brown WE, SanMiguel P (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37:565–576PubMedCrossRefGoogle Scholar
  4. Braquart C, Royer V, Bouhin H (1999) DEC: a new miniature inverted-repeat transposable element from the genome of the beetle Tenebrio molitor. Insect Mol Biol 8:571–574PubMedCrossRefGoogle Scholar
  5. Brunner S, Fengler KA, Morgante M, Tingey SV, Rafalski JA (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360PubMedCrossRefGoogle Scholar
  6. Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294PubMedCrossRefGoogle Scholar
  7. Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916PubMedCrossRefGoogle Scholar
  8. Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529PubMedCrossRefGoogle Scholar
  9. Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089PubMedCrossRefGoogle Scholar
  10. Clark RM, Tavaré S, Doebley JF (2005) Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol Biol Evol 22:2304–2312PubMedCrossRefGoogle Scholar
  11. Craig NL (1997) Target site selection in transposition. Annu Rev Biochem 66:437–474PubMedCrossRefGoogle Scholar
  12. Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) (2002) Mobile DNA II. ASM Press, WashingtonGoogle Scholar
  13. Feschotte C, Mouches C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 17:730–737PubMedGoogle Scholar
  14. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  15. Feschotte C, Osterlund MT, Peeler R, Wessler SR (2005) DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Res 33:2153–2165PubMedCrossRefGoogle Scholar
  16. Garcia-Martinez J, Martinez-Izquierdo JA (2003) Study of the evolution of the Grande retrotransposon in the Zea genus. Mol Biol Evol 20:831–841PubMedCrossRefGoogle Scholar
  17. Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KFX, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624PubMedCrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98Google Scholar
  19. Izsvak Z, Ivics Z, Shimoda N, Mohn D, Okamoto H, Hackett PB (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol 48:13–21PubMedCrossRefGoogle Scholar
  20. Jiang N, Jordan IK, Wessler SR (2002) Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol 130:1697–1705PubMedCrossRefGoogle Scholar
  21. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  22. Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119PubMedCrossRefGoogle Scholar
  23. Jobling MA, Hurles ME, Tyler-Smith C (2004) Human evolutionary genetics. Garland Publishing, Abingdon and New YorkGoogle Scholar
  24. Kapitonov V, Jurka J (1996) The age of Alu subfamilies. J Mol Evol 42:59–65PubMedCrossRefGoogle Scholar
  25. Kapitonov VV, Jurka J (2004) Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol 23:311–324PubMedCrossRefGoogle Scholar
  26. Ketting RF, Fischer SE, Plasterk RH (1997) Target choice determinants of the Tc1 transposon of Caenorhabditis elegans. Nucleic Acids Res 25:4041–4047PubMedCrossRefGoogle Scholar
  27. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 11:1–120Google Scholar
  28. Liao GC, Rehm EJ, Rubin GM (2000) Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 97:3347–3351PubMedCrossRefGoogle Scholar
  29. Loot C, Santiago N, Sanz A, Casacuberta JM (2006) The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs. Nucleic Acids Res 34:5238–5246PubMedCrossRefGoogle Scholar
  30. Lu Y, Rong T, Cao M (2008) Analysis of DNA methylation in different maize tissues. J Genet Genomics 35:41–48PubMedCrossRefGoogle Scholar
  31. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869PubMedCrossRefGoogle Scholar
  32. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774PubMedGoogle Scholar
  33. Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625PubMedCrossRefGoogle Scholar
  34. Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172PubMedCrossRefGoogle Scholar
  35. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  36. Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83:321–329PubMedCrossRefGoogle Scholar
  37. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363PubMedCrossRefGoogle Scholar
  38. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269PubMedCrossRefGoogle Scholar
  39. Posada D, Crandall K (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45PubMedCrossRefGoogle Scholar
  40. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  41. Rozas J, Rozas R (1999) DnaSP version 3: AN integreted program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  42. Saillard J, Forster P, Lynnerup N, Bandelt HJ, Norby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718–726PubMedCrossRefGoogle Scholar
  43. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381PubMedCrossRefGoogle Scholar
  44. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45PubMedCrossRefGoogle Scholar
  45. Santiago N, Herraiz C, Goni JR, Messeguer X, Casacuberta JM (2002) Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol 19:2285–2293PubMedGoogle Scholar
  46. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetic data. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  47. Slatkin M, Hudson RR (1991) Paiwise comparisons on mitocondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedGoogle Scholar
  48. Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci USA 93:1443–1448PubMedCrossRefGoogle Scholar
  49. Surzycki SA, Belknap WR (2000) Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc Natl Acad Sci USA 97:245–249PubMedCrossRefGoogle Scholar
  50. Tai T, Tanksley S (1991) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol 8:297–303Google Scholar
  51. Takata M, Kishima Y, Sano Y (2005) DNA methylation polymorphisms in rice and wild rice strains: detection of epigenetic markers. Breed Sci 51:57–63CrossRefGoogle Scholar
  52. Takata M, Kiyohara A, Takasu A, Kishima Y, Ohtsubo H, Sano Y (2007) Rice transposable elements are characterized by various methylation environments in the genome. BMC Genomics. doi: 10.1186/1471-2164-1188-1469
  53. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  54. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  55. Tu Z (2000) Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 17:1313–1325PubMedGoogle Scholar
  56. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  57. Walker EL, Eggleston WB, Demopulos D, Kermicle J, Dellaporta SL (1997) Insertion of a novel class of transposable elements with a strong target site preference at the r locus of maize. Genetics 146:681–693PubMedGoogle Scholar
  58. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694PubMedCrossRefGoogle Scholar
  59. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  60. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446PubMedCrossRefGoogle Scholar
  61. Xu M, Li X, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18:361–368CrossRefGoogle Scholar
  62. Yang G, Lee YH, Jiang Y, Shi X, Kertbundit S, Hall TC (2005) A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell 17:1559–1568PubMedCrossRefGoogle Scholar
  63. Yang G, Zhang F, Hancock CN, Wessler SR (2007) Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10962–10967PubMedCrossRefGoogle Scholar
  64. Yeadon PJ, Catcheside DE (1995) Guest: a 98 bp inverted repeat transposable element in Neurospora crassa. Mol Gen Genet 247:105–109PubMedCrossRefGoogle Scholar
  65. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci USA 97:1160–1165PubMedCrossRefGoogle Scholar
  66. Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR (2001) P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci USA 98:12572–12577PubMedCrossRefGoogle Scholar
  67. Zhang X, Jiang N, Feschotte C, Wessler SR (2004) PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tatiana Zerjal
    • 1
    • 5
  • Johann Joets
    • 2
  • Karine Alix
    • 3
  • Marie-Angèle Grandbastien
    • 4
  • Maud I. Tenaillon
    • 1
  1. 1.CNRS, UMR 0320/UMR 8120, Génétique VégétaleGif-sur-YvetteFrance
  2. 2.INRA, UMR 0320/UMR 8120, Génétique VégétaleGif-sur-YvetteFrance
  3. 3.AgroParisTech, UMR 0320/UMR 8120, Génétique VégétaleGif-sur-YvetteFrance
  4. 4.INRA, Laboratoire De Biologie Cellulaire, Institut Jean-Pierre BourginVersailles cedexFrance
  5. 5.UMR de Génétique Végétale, INRA/Univ Paris-Sud/CNRS/AgroParisTech, Ferme du MoulonGif-sur-YvetteFrance

Personalised recommendations