Plant Molecular Biology

, Volume 71, Issue 1–2, pp 81–98 | Cite as

Characterization of the wheat endosperm transfer cell-specific protein TaPR60

  • Nataliya Kovalchuk
  • Jessica Smith
  • Margaret Pallotta
  • Rohan Singh
  • Ainur Ismagul
  • Serik Eliby
  • Natalia Bazanova
  • Andrew S. Milligan
  • Maria Hrmova
  • Peter Langridge
  • Sergiy LopatoEmail author


The TaPR60 gene from bread wheat encodes a small cysteine-rich protein with a hydrophobic signal peptide, predicted to direct the TaPR60 protein to a secretory pathway. It was demonstrated by heterologous expression of recombinant TaPR60 protein that the signal peptide is recognized and cleaved in yeast cells. The full-length gene including promoter sequence of a TaPR60 orthologue was cloned from a BAC library of Triticum durum. A transcriptional promoter-GUS fusion was stably transformed into wheat, barley and rice. The strongest GUS expression in wheat and barley was found in the endosperm transfer cells, while in rice the promoter was active inside the starchy endosperm during the early stages of grain filling. The TaPR60 gene was also used as bait in a yeast two-hybrid screen. Five proteins were identified in the screen, and for some of these prey proteins, the interaction was confirmed by co-immunoprecipitation. The signal peptide binding proteins, TaUbiL1 and TaUbiL2, are homologues of animal proteins, which belong to proteolytic complexes, and therefore may be responsible for TaPR60 processing or degradation of the signal peptide. Other proteins that interact with TaPR60 may have a function in TaPR60 secretion or regulation of this process. Examination of a three dimensional model of TaPR60 suggested that this protein could be involved in binding of lipidic molecules.


Grain development Endosperm Transfer cells LTP Processing Proteins–protein interaction 



Endosperm transfer cells


Basal endosperm transfer layers


Basal layer type antifungal protein


Days after pollination


GenBank expressed sequence tag database




Bacterial artificial chromosome


Yeast two-hybrid


yeast three-hybrid


Binding domain


Activation domain


Ubiquitin like domain


Ubiquitin associated domain


Amyloid precursor protein


Blue copper protein



We thank Professor U. Grossniklaus for providing us with the collection of pMDC vectors, and Dr. U. Langridge and R. Hosking for assistance with growing plants. This work was supported by the Australian Research Council, the Grains Research and Development Corporation and the Government of South Australia.

Supplementary material

11103_2009_9510_MOESM1_ESM.pdf (1.5 mb)
Supplementary Fig. 1 Alignment of protein sequences of TaUbiL1 (Acc. FJ459808) and TaUbiL2 (Acc. FJ459809) to similar proteins from mammals: mouse Ataxin/Ubiquilin4 (Acc. Q99NB8), human Ubiquilin1 (Acc. EAW62658), rat Ubiquilin1 (Acc. NP_446199). Identical amino acids are in black boxes, similar amino acids are in grey boxes. The UBI domain is underlined with a solid line, the conserved region with a dashed line, and the UBA domain with a dotted line. (PDF 1535 kb)


  1. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–D425. doi: 10.1093/nar/gkm993 PubMedCrossRefGoogle Scholar
  2. Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnol J 3:275–307. doi: 10.1111/j.1467-7652.2005.00130.x PubMedCrossRefGoogle Scholar
  3. Barrero C, Muniz LM, Gomez E, Hueros G, Royo J (2006) Molecular dissection of the interaction between the transcriptional activator ZmMRP-1 and the promoter of BETL-1. Plant Mol Biol 62:655–668. doi: 10.1007/s11103-006-9047-5 PubMedCrossRefGoogle Scholar
  4. Baud F, Pebaypeyroula E, Cohenaddad C, Odani S, Lehmann MS (1993) Cristal-structure of hydrophobic protein from soybean—a member of a new cysteine-rich family. J Mol Biol 231:877–887. doi: 10.1006/jmbi.1993.1334 PubMedCrossRefGoogle Scholar
  5. Becraft PW (2001a) Cell fate specification in the cereal endosperm. Semin Cell Dev Biol 12:387–394. doi: 10.1006/scdb.2001.0268 PubMedCrossRefGoogle Scholar
  6. Becraft PW (2001b) Plant steroids recognized at the cell surface. Trends Genet 17:60–62. doi: 10.1016/S0168-9525(00)02165-X PubMedCrossRefGoogle Scholar
  7. Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ (2001) GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4:908–916. doi: 10.1038/nn0901-908 PubMedCrossRefGoogle Scholar
  8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi: 10.1093/nar/28.1.235 PubMedCrossRefGoogle Scholar
  9. Biggins S, Ivanovska I, Rose MD (1996) Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 133:1331–1346. doi: 10.1083/jcb.133.6.1331 PubMedCrossRefGoogle Scholar
  10. Bolhuis A, Matzen A, Hyyrylainen HL, Kontinen VP, Meima R, Chapuis J, Venema G, Bron S, Freudl R, van Dijl JM (1999) Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem 274:24585–24592. doi: 10.1074/jbc.274.35.24585 PubMedCrossRefGoogle Scholar
  11. Brands A, Ho THD (2002) Function of a plant stress-induced gene, HVA22. Synthetic enhancement screen with its yeast homolog reveals its role in vesicular traffic. Plant Physiol 130:1121–1131. doi: 10.1104/pp.007716 PubMedCrossRefGoogle Scholar
  12. Broekaert WF, Cammue BPA, DeBolle MFC, Thevissen K, DeSamblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323. doi: 10.1080/713608148 CrossRefGoogle Scholar
  13. Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236. doi: 10.1104/pp.103.032904 PubMedCrossRefGoogle Scholar
  14. Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53:621–645. doi: 10.1007/s000180050082 PubMedCrossRefGoogle Scholar
  15. Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939. doi: 10.1007/s00122-003-1331-z PubMedCrossRefGoogle Scholar
  16. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22:4902–4913. doi: 10.1128/MCB.22.13.4902-4913.2002 PubMedCrossRefGoogle Scholar
  17. Cruz-Garcia F, Hancock CN, Kim D, McClure B (2005) Stylar glycoproteins bind to S-RNase in vitro. Plant J 42:295–304. doi: 10.1111/j.1365-313X.2005.02375.x PubMedCrossRefGoogle Scholar
  18. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469. doi: 10.1104/pp.103.027979 PubMedCrossRefGoogle Scholar
  19. Diaz I, Martinez M, Isabel-LaMoneda I, Rubio-Somoza I, Carbonero P (2005) The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant J 42:652–662. doi: 10.1111/j.1365-313X.2005.02402.x PubMedCrossRefGoogle Scholar
  20. Doan DNP, Linnestad C, Olsen OA (1996) Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol Biol 31:877–886. doi: 10.1007/BF00019474 PubMedCrossRefGoogle Scholar
  21. Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138:778–789. doi: 10.1104/pp.105.063388 PubMedCrossRefGoogle Scholar
  22. Drea S, Leader DJ, Arnold BC, Shaw P, Dolan L, Doonan JH (2005) Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17:2172–2185. doi: 10.1105/tpc.105.034058 PubMedCrossRefGoogle Scholar
  23. Ellerstrom M, Stalberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027. doi: 10.1007/BF00041385 PubMedCrossRefGoogle Scholar
  24. Ezcurra I, Ellerstrom M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709. doi: 10.1023/A:1006206124512 PubMedCrossRefGoogle Scholar
  25. Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537. doi: 10.1104/pp.006833 PubMedCrossRefGoogle Scholar
  26. Fujiwara T, Beachy RN (1994) Tissue specific and temporal regulation of beta-conglycinin gene—roles of the RY repeat and other cis-acting elements. Plant Mol Biol 24:261–272. doi: 10.1007/BF00020166 PubMedCrossRefGoogle Scholar
  27. Funakoshi A, Fukamizu Y, Miyasaka K (1999a) Mechanism of cholecystokinin-A-receptor antagonist on human pancreatic exocrine secretion—localization of CCK-A receptor in the human duodenum. Digestion 60:75–80. doi: 10.1159/000051459 PubMedCrossRefGoogle Scholar
  28. Funakoshi M, Geley S, Hunt T, Nishimoto T, Kobayashi H (1999b) Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. EMBO J 18:5009–5018. doi: 10.1093/emboj/18.18.5009 PubMedCrossRefGoogle Scholar
  29. Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci USA 99:745–750. doi: 10.1073/pnas.012585199 PubMedCrossRefGoogle Scholar
  30. Gao L, Tu H, Shi ST, Lee KJ, Asanaka M, Hwang SB, Lai MMC (2003) Interaction with a ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent RNA polymerase. J Virol 77:4149–4159. doi: 10.1128/JVI.77.7.4149-4159.2003 PubMedCrossRefGoogle Scholar
  31. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018. doi: 10.1093/bioinformatics/btg124 PubMedCrossRefGoogle Scholar
  32. Gomez E, Royo J, Guo Y, Thompson R, Hueros G (2002) Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1. Plant Cell 14:599–610. doi: 10.1105/tpc.010365 PubMedCrossRefGoogle Scholar
  33. Guex N, Peitsch MC (1997) Swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi: 10.1002/elps.1150181505 PubMedCrossRefGoogle Scholar
  34. Gutierrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O’Sullivan DM, Wormald M, Perez P, Dickinson HG (2004) Maternally expressed gene1 is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301. doi: 10.1105/tpc.019778 PubMedCrossRefGoogle Scholar
  35. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. doi: 10.1093/nar/27.1.297 PubMedCrossRefGoogle Scholar
  36. Hiltunen M, Lu A, Thomas AV, Romano DM, Kim M, Jones PB, Xie Z, Kounnas MZ, Wagner SL, Berezovska O, Hyman BT, Tesco G, Bertram L, Tanzi RE (2006) Ubiquilin 1 modulates amyloid precursor protein trafficking and a beta secretion. J Biol Chem 281:32240–32253. doi: 10.1074/jbc.M603106200 PubMedCrossRefGoogle Scholar
  37. Hueros G, Varotto S, Salamini F, Thompson RD (1995) Molecular characterization of Bet1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7:747–757PubMedCrossRefGoogle Scholar
  38. Hueros C, Gomez E, Cheikh N, Edwards J, Weldon M, Salamini F, Thompson RD (1999) Identification of a promoter sequence from the BETL1 gene cluster able to confer transfer-cell-specific expression in transgenic maize. Plant Physiol 121:1143–1152. doi: 10.1104/pp.121.4.1143 PubMedCrossRefGoogle Scholar
  39. Hunt LT, George DG, Yeh LSL (1985) Ragweed allergen RA-3—relationship to some type-1 copper-binding proteins. J Mol Evol 21:126–132. doi: 10.1007/BF02100086 CrossRefGoogle Scholar
  40. John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31:3982–3992. doi: 10.1093/nar/gkg460 PubMedCrossRefGoogle Scholar
  41. Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856. doi: 10.1093/bioinformatics/14.10.846 PubMedCrossRefGoogle Scholar
  42. Kelley LA, MacCallum RM, Sternberg MJE (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520. doi: 10.1006/jmbi.2000.3741 PubMedCrossRefGoogle Scholar
  43. Kim S, Mollet JC, Dong J, Zhang KL, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci USA 100:16125–16130. doi: 10.1073/pnas.2533800100 PubMedCrossRefGoogle Scholar
  44. Kleijnen MF, Shih AH, Zhou PB, Kumar S, Soccio RE, Kedersha NL, Gill G, Howley PM (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409–419. doi: 10.1016/S1097-2765(00)00040-X PubMedCrossRefGoogle Scholar
  45. Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141. doi: 10.1104/pp.008532 PubMedCrossRefGoogle Scholar
  46. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck—a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. doi: 10.1107/S0021889892009944 CrossRefGoogle Scholar
  47. Li M, Singh R, Bazanova N, Milligan AS, Shirley N, Langridge P, Lopato S (2008) Spatial and temporal expression of endosperm transfer cell-specific promoters in transgenic rice and barley. Plant Biotechnol J 6:465–476. doi: 10.1111/j.1467-7652.2008.00333.x PubMedCrossRefGoogle Scholar
  48. Lopato S, Borisjuk L, Milligan AS, Shirley N, Bazanova N, Parsley K, Langridge P (2006) Systematic identification of factors involved in post-transcriptional processes in wheat grain. Plant Mol Biol 62:637–653. doi: 10.1007/s11103-006-9046-6 PubMedCrossRefGoogle Scholar
  49. Mah AL, Perry G, Smith MA, Monteiro MJ (2000) Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J Cell Biol 151:847–862. doi: 10.1083/jcb.151.4.847 PubMedCrossRefGoogle Scholar
  50. Maitz M, Santandrea G, Zhang ZY, Lal S, Hannah LC, Salamini F, Thompson RD (2000) rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42. doi: 10.1046/j.1365-313x.2000.00747.x PubMedCrossRefGoogle Scholar
  51. Massey LK, Mah AL, Monteiro MJ (2005) Ubiquilin regulates presenilin endoproteolysis and modulates gamma-secretase components, Pen-2 and nicastrin. Biochem J 391:513–525. doi: 10.1042/BJ20050491 PubMedCrossRefGoogle Scholar
  52. Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202. doi: 10.1023/A:1011333321893 CrossRefGoogle Scholar
  53. Mayer BJ (1999) Endocytosis: EH domains lend a hand. Curr Biol 9:R70–R73. doi: 10.1016/S0960-9822(99)80014-1 PubMedCrossRefGoogle Scholar
  54. Muniz LM, Royo J, Gomez E, Barrero C, Bergareche D, Hueros G (2006) The maize transfer cell-specific type-A response regulator ZmTCRR-1 appears to be involved in intercellular signalling. Plant J 48:17–27. doi: 10.1111/j.1365-313X.2006.02848.x PubMedCrossRefGoogle Scholar
  55. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–481. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  56. Nicholls A, Sharp KA, Honig B (1991) Protein folding and association—insides from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:281–296. doi: 10.1002/prot.340110407 PubMedCrossRefGoogle Scholar
  57. Olsen OA (2004a) Dynamics of maize aleurone cell formation: the “surface-”rule. Maydica 49:37–40Google Scholar
  58. Olsen OA (2004b) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227. doi: 10.1105/tpc.017111 PubMedCrossRefGoogle Scholar
  59. Pasquato N, Berni R, Folli C, Folloni S, Cianci M, Pantano S, Helliwell JR, Zanotti G (2006) Crystal structure of peach Pru p 3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens. J Mol Biol 356:684–694. doi: 10.1016/j.jmb.2005.11.063 PubMedCrossRefGoogle Scholar
  60. Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ (2004) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 279:4768–4781. doi: 10.1074/jbc.M309212200 PubMedCrossRefGoogle Scholar
  61. Provart NJ, Gil P, Chen WQ, Han B, Chang HS, Wang X, Zhu T (2003) Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol 132:893–906. doi: 10.1104/pp.103.021261 PubMedCrossRefGoogle Scholar
  62. Pummi T, Leskela S, Wahlstrom E, Gerth U, Tjalsma H, Hecker M, Sarvas M, Kontinen VP (2002) ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter. J Bacteriol 184:1010–1018. doi: 10.1128/jb.184.4.1010-1018.2002 PubMedCrossRefGoogle Scholar
  63. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99. doi: 10.1016/S0022-2836(63)80023-6 PubMedCrossRefGoogle Scholar
  64. Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AGM (2008) Sexual and apomictic (asexual) seed formation in Hieracium requires the plant Polycomb-group gene fertilization independent endosperm (FIE). Plant Cell 20:2372–2386. doi: 10.1105/tpc.108.059287 PubMedCrossRefGoogle Scholar
  65. Rost B, Yachdav G, Liu JF (2004) The predictprotein server. Nucleic Acids Res 32:W321–W326. doi: 10.1093/nar/gkh377 PubMedCrossRefGoogle Scholar
  66. Ryden LG, Hunt LT (1993) Evolution of protein complexity—the blue copper-containing oxidases and related proteins. J Mol Evol 36:41–66. doi: 10.1007/BF02407305 PubMedCrossRefGoogle Scholar
  67. Sali A, Blundell TL (1993) Comperative protein modeling by satisfaction of spatial restrains. J Mol Biol 234:779–815. doi: 10.1006/jmbi.1993.1626 PubMedCrossRefGoogle Scholar
  68. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, vol 1, 2 and 3, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  69. Sanchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA 95:13597–13602. doi: 10.1073/pnas.95.23.13597 PubMedCrossRefGoogle Scholar
  70. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509. doi: 10.1016/0076-6879(93)17086-K PubMedCrossRefGoogle Scholar
  71. Serna A, Maitz M, O’Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F, Thompson RD (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J 25:687–698. doi: 10.1046/j.1365-313x.2001.01004.x PubMedCrossRefGoogle Scholar
  72. Shen QX, Chen CN, Brands A, Pan SM, Ho THD (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol 45:327–340. doi: 10.1023/A:1006460231978 PubMedCrossRefGoogle Scholar
  73. Sippl MJ (1993) Recognition of errors in 3-dimentional structures of proteins. Proteins 17:355–362. doi: 10.1002/prot.340170404 PubMedCrossRefGoogle Scholar
  74. Sippl MJ, Wiederstein M (2008) A note on difficult structure alignment problems. Bioinformatics 24:426–427. doi: 10.1093/bioinformatics/btm622 PubMedCrossRefGoogle Scholar
  75. Sokolenko A, Pojidaeva E, Zinchenko V, Panichkin V, Glaser VM, Herrmann RG, Shestakov SV (2002) The gene complement for proteolysis in the Cyanobacterium synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr Genet 41:291–310. doi: 10.1007/s00294-002-0309-8 PubMedCrossRefGoogle Scholar
  76. Thompson RD, Hueros G, Becker HA, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160:775–783. doi: 10.1016/S0168-9452(01)00345-4 PubMedCrossRefGoogle Scholar
  77. Tingay S, McElroy D, Kalla R, Fieg S, Wang MB, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376. doi: 10.1046/j.1365-313X.1997.11061369.x CrossRefGoogle Scholar
  78. Wada S, Hamada M, Satoh N (2006) A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis. Cell Stress Chaperones 11:23–33. doi: 10.1379/CSC-137R.1 PubMedCrossRefGoogle Scholar
  79. Wang HL, Offler CE, Patrick JW, Ugalde TD (1994) The cellular pathway of photosynthate transfer in the developing wheat-grain. 1. Delineation of a potential transfer pathway using fluorescent dyes. Plant Cell Environ 17:257–266. doi: 10.1111/j.1365-3040.1994.tb00291.x CrossRefGoogle Scholar
  80. Wu AL, Wang J, Zheleznyak A, Brown EJ (1999) Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol Cell 4:619–625. doi: 10.1016/S1097-2765(00)80212-9 PubMedCrossRefGoogle Scholar
  81. Wu SL, Mikhailov A, Kallo-Hosein H, Hara K, Yonezawa K, Avruch J (2002) Characterization of ubiquilin 1, an mTOR-interacting protein. Biochim Biophys Acta-Mol Cell Res 1542:41–56CrossRefGoogle Scholar
  82. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40–47. doi: 10.1186/1471-2105-9-40 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nataliya Kovalchuk
    • 1
  • Jessica Smith
    • 1
  • Margaret Pallotta
    • 1
  • Rohan Singh
    • 2
  • Ainur Ismagul
    • 1
  • Serik Eliby
    • 1
  • Natalia Bazanova
    • 1
  • Andrew S. Milligan
    • 1
  • Maria Hrmova
    • 1
  • Peter Langridge
    • 1
  • Sergiy Lopato
    • 1
    Email author
  1. 1.Australian Centre for Plant Functional GenomicsGlen OsmondAustralia
  2. 2.School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia

Personalised recommendations