Plant Molecular Biology

, Volume 71, Issue 1–2, pp 39–50 | Cite as

Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana

  • Chaowen Xiao
  • Fulu Chen
  • Xuhong Yu
  • Chentao LinEmail author
  • Yong-Fu FuEmail author


The Arabidopsis genome encodes 29 AHL (AT-hook motif nuclear localized) proteins, but the function for most of them remains unknown. We report here a study of the AHL22 gene, which was originally identified as a gain-of-function allele that enhanced the phenotype of the cry1 cry2 mutant. AHL22 is a nuclear protein with the binding activity for an AT-rich DNA sequence. AHL22 overexpression delayed flowering and caused a constitutive photomorphogenic phenotype. The loss-of-function AHL22 mutant showed no clear phenotype on flowering, but slightly longer hypocotyls. However, silencing four AHL genes (AHL22, AHL18, AHL27, and AHL29) resulted in early flowering and enhanced ahl22-1 mutant phenotype on the growth of hypocotyls, suggesting genetic redundancy of AHL22 with other AHL genes on these plant developmental events. Further analysis showed that AHL22 controlled flowering and hypocotyl elongation might result from primarily the regulation of FT and PIF4 expression, respectively.


Arabidopsis thaliana AT-hook Flowering time Hypocotyl Photomorphogenesis 



Thanks to Drs. Bekir Ülker and Jane Parker for kindly providing pJawohl8-RNAi and pLeela vectors, and to Dr. Robert Koebner for his critical reading of the manuscript. This work was supported in part by the National ‘‘863’’ Program of China (2006AA10A111, 2006AA10Z107, and 2007AA10Z119), the National Key Basic Research ‘973’ Program of China (2004CB117206), the Key Technology R & D Program (2007BAD59B02), National Science Foundation of China (30671245), National Institute of Health (GM56265), and UCLA faculty research and Sol Leshin BGU-UCLA Academic Cooperation programs.

Supplementary material

11103_2009_9507_MOESM1_ESM.doc (1 mb)
DOC 1038 kb


  1. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166. doi: 10.1038/366162a0 PubMedCrossRefGoogle Scholar
  2. Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421. doi: 10.1093/nar/26.19.4413 PubMedCrossRefGoogle Scholar
  3. Bastow R, Dean C (2003) Plant sciences. Deciding when to flower. Science 302:1695–1696. doi: 10.1126/science.1092862 PubMedCrossRefGoogle Scholar
  4. Cattaruzzi G, Altamura S, Tessari MA, Rustighi A, Giancotti V, Pucillo C, Manfioletti G (2007) The second AT-hook of the architectural transcription factor HMGA2 is determinant for nuclear localization and function. Nucleic Acids Res 35:1751–1760. doi: 10.1093/nar/gkl1106 PubMedCrossRefGoogle Scholar
  5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x PubMedCrossRefGoogle Scholar
  6. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723. doi: 10.1073/pnas.97.7.3718 PubMedCrossRefGoogle Scholar
  7. El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Wagemaker C, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol 133:1504–1516. doi: 10.1104/pp.103.029819 PubMedCrossRefGoogle Scholar
  8. Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15:914–925. doi: 10.1105/tpc.010280 PubMedCrossRefGoogle Scholar
  9. Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K (2004) Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol Biol 56:225–239. doi: 10.1007/s11103-004-3249-5 PubMedCrossRefGoogle Scholar
  10. Grasser KD, Launholt D, Grasser M (2007a) High mobility group proteins of the plant HMGB family: dynamic chromatin modulators. Biochim Biophys Acta 1769:346–357PubMedGoogle Scholar
  11. Grasser M, Christensen JM, Peterhansel C, Grasser KD (2007b) Basic and acidic regions flanking the HMG-box domain of maize HMGB1 and HMGB5 modulate the stimulatory effect on the DNA binding of transcription factor Dof2. Biochemistry 46:6375–6382. doi: 10.1021/bi6024947 PubMedCrossRefGoogle Scholar
  12. Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363. doi: 10.1126/science.279.5355.1360 PubMedCrossRefGoogle Scholar
  13. Harrer M, Luhrs H, Bustin M, Scheer U, Hock R (2004) Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci 117:3459–3471. doi: 10.1242/jcs.01160 PubMedCrossRefGoogle Scholar
  14. Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450. doi: 10.1093/emboj/21.10.2441 PubMedCrossRefGoogle Scholar
  15. Launholt D, Merkle T, Houben A, Schulz A, Grasser KD (2006) Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell 18:2904–2918. doi: 10.1105/tpc.106.047274 PubMedCrossRefGoogle Scholar
  16. LeClere S, Bartel B (2001) A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol Biol 46:695–703. doi: 10.1023/A:1011699722052 PubMedCrossRefGoogle Scholar
  17. Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam HG (2007) Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 52:1140–1153PubMedCrossRefGoogle Scholar
  18. Lin C, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J 10:893–902. doi: 10.1046/j.1365-313X.1996.10050893.x PubMedCrossRefGoogle Scholar
  19. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690. doi: 10.1073/pnas.95.5.2686 PubMedCrossRefGoogle Scholar
  20. Lu Q (2005) Seamless cloning and gene fusion. Trends Biotechnol 23:199–207. doi: 10.1016/j.tibtech.2005.02.008 PubMedCrossRefGoogle Scholar
  21. Martinez-Garcia JF, Quail PH (1999) The HMG-I/Y protein PF1 stimulates binding of the transcriptional activator GT-2 to the PHYA gene promoter. Plant J 18:173–183. doi: 10.1046/j.1365-313X.1999.00440.x PubMedCrossRefGoogle Scholar
  22. Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol 143:1152–1162. doi: 10.1104/pp.106.093542 PubMedCrossRefGoogle Scholar
  23. Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126:2073–2082PubMedGoogle Scholar
  24. Nagy F, Schafer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53:329–355. doi: 10.1146/annurev.arplant.53.100301.135302 PubMedCrossRefGoogle Scholar
  25. Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667. doi: 10.1016/S0092-8674(00)81636-0 PubMedCrossRefGoogle Scholar
  26. Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–784. doi: 10.1038/23500 PubMedCrossRefGoogle Scholar
  27. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466. doi: 10.1038/35013076 PubMedCrossRefGoogle Scholar
  28. Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394. doi: 10.1046/j.1365-313X.2001.2641042.x PubMedCrossRefGoogle Scholar
  29. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–2647. doi: 10.1101/gad.1122903 PubMedCrossRefGoogle Scholar
  30. Sgarra R, Lee J, Tessari MA, Altamura S, Spolaore B, Giancotti V, Bedford MT, Manfioletti G (2006) The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J Biol Chem 281:3764–3772. doi: 10.1074/jbc.M510231200 PubMedCrossRefGoogle Scholar
  31. Street IH, Shah PK, Smith AM, Avery N, Neff MM (2008) The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis. Plant J 54:1–14. doi: 10.1111/j.1365-313X.2007.03393.x PubMedCrossRefGoogle Scholar
  32. Su Y, Kwon CS, Bezhani S, Huvermann B, Chen C, Peragine A, Kennedy JF, Wagner D (2006) The N-terminal ATPase AT-hook-containing region of the Arabidopsis chromatin-remodeling protein SPLAYED is sufficient for biological activity. Plant J 46:685–699. doi: 10.1111/j.1365-313X.2006.02734.x PubMedCrossRefGoogle Scholar
  33. Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10. doi: 10.1016/j.pbi.2003.11.010 PubMedCrossRefGoogle Scholar
  34. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: flowering locus T moves center stage. Annu Rev Plant Biol 59:573–594. doi: 10.1146/annurev.arplant.59.032607.092755 PubMedCrossRefGoogle Scholar
  35. Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Nagy F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101:1397–1402. doi: 10.1073/pnas.0308044100 PubMedCrossRefGoogle Scholar
  36. Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol 144:1680–1689. doi: 10.1104/pp.107.096115 PubMedCrossRefGoogle Scholar
  37. Weigel D, Glazebrook J (2002) TAIL-PCR. In: Weigel D, Glazebrook J (eds) Arabidopsis, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 144–153Google Scholar
  38. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013. doi: 10.1104/pp.122.4.1003 PubMedCrossRefGoogle Scholar
  39. Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu X, Reid JB, Lin C (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145:106–118. doi: 10.1104/pp.107.099838 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Chinese Academy of Agricultural SciencesHaidian District, BeijingPeople’s Republic of China
  2. 2.Department of Molecular, Cell & Developmental BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations