Plant Molecular Biology

, 70:565 | Cite as

Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins

  • Juan Manuel Ruiz-LozanoEmail author
  • Maria del Mar Alguacil
  • Gloria Bárzana
  • Paolo Vernieri
  • Ricardo Aroca


The arbuscular mycorrhizal (AM) symbiosis has been shown to modulate the same physiological processes as the phytohormone abscisic acid (ABA) and to improve plant tolerance to water deficit. The aim of the present research was to evaluate the combined influence of AM symbiosis and exogenous ABA application on plant root hydraulic properties and on plasma-membrane intrinsic proteins (PIP) aquaporin gene expression and protein accumulation after both a drought and a recovery period. Results obtained showed that the application of exogenous ABA enhanced osmotic root hydraulic conductivity (L) in all plants, regardless of water conditions, and that AM plants showed lower L values than nonAM plants, a difference that was especially accentuated when plants were supplied with exogenous ABA. This effect was clearly correlated with the accumulation pattern of the different PIPs analyzed, since most showed reduced expression and protein levels in AM plants fed with ABA as compared to their nonAM counterparts. The possible involvement of plant PIP aquaporins in the differential regulation of L by ABA in AM and nonAM plants is further discussed.


ABA Aquaporins Arbuscular mycorrhiza Drought Recovery 



This work was financed by CICYT-FEDER (Project AGL2005-01237). R. Aroca was financed by Spanish Ministry of Education and Science throughout the Juan de la Cierva program. We thank Dr. F. Chaumont (Université Catholique de Louvain) for providing us with antibodies against ZmPIP1;2, ZmPIP2;1, ZmPIP2;5 and ZmPIP2;6.


  1. Alexandersson E, Fraysse L, Sjöval-Larsen S, Gustavsson S, Fllert M, Karlsson M, Johanson U, Kjelbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484. doi: 10.1007/s11103-005-0352-1 PubMedCrossRefGoogle Scholar
  2. Aroca R (2006) Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants. J Plant Growth Regul 25:10–17. doi: 10.1007/s00344-005-0075-1 CrossRefGoogle Scholar
  3. Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679. doi: 10.1016/S0168-9452(03)00257-7 CrossRefGoogle Scholar
  4. Aroca R, Amodeo A, Fernández-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353. doi: 10.1104/pp.04.051045 PubMedCrossRefGoogle Scholar
  5. Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisc acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot (Lond) 98:1301–1310. doi: 10.1093/aob/mcl219 CrossRefGoogle Scholar
  6. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816. doi: 10.1111/j.1469-8137.2006.01961.x PubMedCrossRefGoogle Scholar
  7. Aroca R, Aguacil M, Vernieri P, Ruiz-Lozano JM (2008a) Plant responses to drought stress and exogenous ABA application are differently modulated by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microb Ecol 56:704–719. doi: 10.1007/s00248-008-9390-y PubMedCrossRefGoogle Scholar
  8. Aroca R, Vernieri P, Ruiz-Lozano JM (2008b) Mycorrhizal and non mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041. doi: 10.1093/jxb/ern057 PubMedCrossRefGoogle Scholar
  9. Augé RM (1989) Do VA mycorrhizae enhance transpiration by affecting host phosphorus content? J Plant Nutr 12:743–753. doi: 10.1080/01904168909363988 CrossRefGoogle Scholar
  10. Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi: 10.1007/s005720100097 CrossRefGoogle Scholar
  11. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381Google Scholar
  12. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060 CrossRefGoogle Scholar
  13. Beaudette PC, Chlup M, Yee J, Emery RJN (2007) Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA. J Exp Bot 58:1291–1300. doi: 10.1093/jxb/erl289 PubMedCrossRefGoogle Scholar
  14. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  15. Bochicchio A, Vernieri P, Puliga S, Calducci F, Vazzana C (1994) Acquisition of desiccation tolerance by isolated maize embryos exposed to different conditions: the questionable role of endogenous abscisic acid. Physiol Plant 91:615–622. doi: 10.1111/j.1399-3054.1994.tb02996.x CrossRefGoogle Scholar
  16. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805. doi: 10.1104/pp.dl105.065029 PubMedCrossRefGoogle Scholar
  17. Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161. doi: 10.1046/j.1365-3040.2002.00746.x PubMedCrossRefGoogle Scholar
  18. Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425. doi: 10.1016/0968-0004(94)90091-4 PubMedCrossRefGoogle Scholar
  19. Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333. doi: 10.1104/pp.106.4.1325 PubMedCrossRefGoogle Scholar
  20. Dell’Amico J, Torrecillas A, Rodríguez P, Morte A, Sánchez-Blanco MJ (2002) Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J Agric Sci 138:387–393. doi: 10.1017/S0021859602002101 Google Scholar
  21. Duan X, Newman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550. doi: 10.1093/jxb/47.10.1541 CrossRefGoogle Scholar
  22. Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083. doi: 10.1078/0176-1617-00989 PubMedCrossRefGoogle Scholar
  23. Galmés J, Pou A, Alsina MM, Tomás M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681. doi: 10.1007/s00425-007-0515-1 PubMedCrossRefGoogle Scholar
  24. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytol 84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  25. Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997. doi: 10.1111/j.1399-3054.1997.tb00027.x CrossRefGoogle Scholar
  26. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35. doi: 10.1016/j.agee.2005.09.009 CrossRefGoogle Scholar
  27. Green CD, Stodola A, Augé RM (1998) Transpiration of detached leaves from mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid, pH, calcium and phosphorus. Mycorrhiza 8:93–99. doi: 10.1007/s005720050218 CrossRefGoogle Scholar
  28. Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62:305–323. doi: 10.1007/s11103-006-9022-1 PubMedCrossRefGoogle Scholar
  29. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42. doi: 10.1146/annurev.micro.58.030603.123749 PubMedCrossRefGoogle Scholar
  30. Hartung W, Schraut D, Jiang F (2005) Physiology of abscisic acid (ABA) in roots under stress—a review of the relationship between root ABA and radial water and ABA flows. Aust J Agric Res 56:253–1259. doi: 10.1071/AR05065 CrossRefGoogle Scholar
  31. Hewitt EJ (1952) Sand and water culture methods used in the study of plant nutrition. Technical Communication 22, Farnham Royal, Commonwealth Agricultural Bureaux, BucksGoogle Scholar
  32. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351. doi: 10.1016/j.tplants.2007.06.013 PubMedCrossRefGoogle Scholar
  33. Holbrook NM, Shashidnar VR, James RA, Munss R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514. doi: 10.1093/jexbot/53.373.1503 PubMedCrossRefGoogle Scholar
  34. Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta 211:874–882. doi: 10.1007/s004250000412 PubMedCrossRefGoogle Scholar
  35. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403. doi: 10.1146/annurev.arplant.47.1.377 PubMedCrossRefGoogle Scholar
  36. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153. doi: 10.1093/pcp/pci230 PubMedCrossRefGoogle Scholar
  37. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53. doi: 10.1007/s00248-007-9249-7 PubMedCrossRefGoogle Scholar
  38. Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725. doi: 10.1023/B:PLAN.0000040900.61345.a6 PubMedCrossRefGoogle Scholar
  39. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot (Lond) 90:301–313. doi: 10.1093/aob/mcf199 CrossRefGoogle Scholar
  40. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güclü J, Vinh J, Heyes J, Franck KI, Schäffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522. doi: 10.1105/tpc.008888 PubMedCrossRefGoogle Scholar
  41. Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130. doi: 10.1093/jxb/erl118 PubMedCrossRefGoogle Scholar
  42. Kaldenhoff R, Ribas-Carbo M, Flexas J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666. doi: 10.1111/j.1365-3040.2008.01792.x PubMedCrossRefGoogle Scholar
  43. Kay R, Chau A, Daly M (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plants genes. Science 236:1299–1302. doi: 10.1126/science.236.4806.1299 PubMedCrossRefGoogle Scholar
  44. Kyllo DA, Velez V, Tyree MT (2003) Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Phychotria. New Phytol 160:443–454. doi: 10.1046/j.1469-8137.2003.00896.x CrossRefGoogle Scholar
  45. Levy Y, Syvertsen JP, Nemec S (1983) Effect of drought stress and vesicular–arbuscular mycorrhiza on citrus transpiration and hydraulic conductivity of roots. New Phytol 93:61–66. doi: 10.1111/j.1469-8137.1983.tb02692.x CrossRefGoogle Scholar
  46. Lian HL, Yu X, Lane D, Sun WN, Tang ZC, Su WA (2006) Upland rice and lowland rice exhibit different PIP expression under water deficit and ABA treatment. Cell Res 16:651–660. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  48. Lopez F, Bousser A, Sissoëff I, Gaspar M, Lachaise B, Hoarau J, Mahé A (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol 44:1384–1395. doi: 10.1093/pcp/pcg168 PubMedCrossRefGoogle Scholar
  49. Lovisolo C, Perrone I, Hartung W, Schubert A (2008) An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol 180:642–651. doi: 10.1111/j.1469-8137.2008.02592.x PubMedCrossRefGoogle Scholar
  50. Ludwig-Müller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publisher, The Netherlands, pp 263–285Google Scholar
  51. Luu D-T, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96. doi: 10.1111/j.1365-3040.2004.01295.x CrossRefGoogle Scholar
  52. Mariaux JB, Bockel C, Salamini F, Bartels D (1998) Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 38:1089–1099. doi: 10.1023/A:1006013130681 PubMedCrossRefGoogle Scholar
  53. Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429. doi: 10.1146/annurev.arplant.48.1.399 PubMedCrossRefGoogle Scholar
  54. Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236. doi: 10.1016/j.febslet.2007.03.021 PubMedCrossRefGoogle Scholar
  55. Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Mol Biol 59:595–624. doi: 10.1146/annurev.arplant.59.032607.092734 CrossRefGoogle Scholar
  56. Netting AG (2000) pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implication for plant water relations. J Exp Bot 51:147–158. doi: 10.1093/jexbot/51.343.147 PubMedCrossRefGoogle Scholar
  57. Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186. doi: 10.1016/j.envexpbot.2005.05.011 CrossRefGoogle Scholar
  58. Phillips JM, Hayman DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:159–161CrossRefGoogle Scholar
  59. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. doi: 10.1093/jxb/erh188 PubMedCrossRefGoogle Scholar
  60. Porcel R, Azcón R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65:211–221. doi: 10.1016/j.pmpp.2005.02.003 CrossRefGoogle Scholar
  61. Porcel R, Azcón R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56:1933–1942. doi: 10.1093/jxb/eri188 PubMedCrossRefGoogle Scholar
  62. Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404. doi: 10.1007/s11103-005-4210-y PubMedCrossRefGoogle Scholar
  63. Quintero JM, Fournier JM, Benlloch M (1999) Water transport in sunflower root systems: effects of ABA, Ca2+ status and HgCl2. J Exp Bot 50:1607–1612. doi: 10.1093/jexbot/50.339.1607 CrossRefGoogle Scholar
  64. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317. doi: 10.1007/s00572-003-0237-6 PubMedCrossRefGoogle Scholar
  65. Ruiz-Lozano JM, Azcón R (1997) Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis 23:9–22Google Scholar
  66. Ruiz-Lozano JM, Azcón R, Gómez M (1995) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460PubMedGoogle Scholar
  67. Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693–698. doi: 10.1111/j.1469-8137.2006.01841.x PubMedCrossRefGoogle Scholar
  68. Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682. doi: 10.1078/0176-1617-01191 PubMedCrossRefGoogle Scholar
  69. Savoure A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thalina. Mol Gen Genet 254:104–109. doi: 10.1007/s004380050397 PubMedCrossRefGoogle Scholar
  70. Schraut D, Heilmeier H, Hartung W (2005) Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J Exp Bot 56:879–886. doi: 10.1093/jxb/eri080 PubMedCrossRefGoogle Scholar
  71. Seki M, Ishida J, Narusaka M (2002) Monitoring expression pattern of around 7000 Arabidopsis genes under ABA treatments using full-length cDNA microarray. Funct Integr Genomics 2:282–291. doi: 10.1007/s10142-002-0070-6 PubMedCrossRefGoogle Scholar
  72. Siemens JA, Zwiazek JJ (2008) Root hydraulic properties and growth of balsam poplar (Populus balsamifera) mycorrhizal with Hebeloma crustuliniforme and Wilcoxina mikolae var. mikolae. Mycorrhiza 18:393–401. doi: 10.1007/s00572-008-0193-2 PubMedCrossRefGoogle Scholar
  73. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San DiegoGoogle Scholar
  74. Steudle E (2000) Water uptake by plants roots: and integration of views. Plant Soil 226:45–56. doi: 10.1023/A:1026439226716 CrossRefGoogle Scholar
  75. Sturaro M, Vernieri P, Castiglioni P, Binelli G, Gavazzi G (1996) The rea (red embryonic axis) phenotype describes a new mutation affecting the response of maize embryos to abscisic acid and osmotic stress. J Exp Bot 47:755–762. doi: 10.1093/jxb/47.6.755 CrossRefGoogle Scholar
  76. Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237. doi: 10.1093/pcp/pcf148 PubMedCrossRefGoogle Scholar
  77. Vernieri P, Perata P, Armellini D, Bugnoli M, Presentini R, Lorenzi R, Ceccarelli N, Alpi A, Tognoni F (1989) Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody. J Plant Physiol 134:441–446Google Scholar
  78. Walker-Simmons M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66. doi: 10.1104/pp.84.1.61 PubMedCrossRefGoogle Scholar
  79. Wan X, Steudle E, Hartung W (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and HgCl2. J Exp Bot 55:411–422. doi: 10.1093/jxb/erh051 PubMedCrossRefGoogle Scholar
  80. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210. doi: 10.1046/j.0016-8025.2001.00824.x PubMedCrossRefGoogle Scholar
  81. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94. doi: 10.1016/j.tplants.2004.12.012 PubMedCrossRefGoogle Scholar
  82. Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 18:1095–1102Google Scholar
  83. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119. doi: 10.1016/j.fcr.2005.08.018 CrossRefGoogle Scholar
  84. Zhao C-X, Shao H-B, Chuc L-Y (2008) Aquaporin structure–function relationships: water flow through plant living cells. Colloids Surf B Biointerfaces 62:163–172. doi: 10.1016/j.colsurfb.2007.10.015 PubMedCrossRefGoogle Scholar
  85. Zhu C, Schraut D, Hartung W, Schäffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981. doi: 10.1093/jxb/eri294 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Juan Manuel Ruiz-Lozano
    • 1
    Email author
  • Maria del Mar Alguacil
    • 2
  • Gloria Bárzana
    • 1
  • Paolo Vernieri
    • 3
  • Ricardo Aroca
    • 1
  1. 1.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín (CSIC)GranadaSpain
  2. 2.Department of Soil and Water ConservationCSIC-Centro de Edafología y Biología Aplicada del SeguraMurciaSpain
  3. 3.Dipartimento di Biologia delle Piante AgrarieUniversità degli Studi di PisaPisaItaly

Personalised recommendations