Plant Molecular Biology

, Volume 70, Issue 5, pp 523–533 | Cite as

A mutation in the Proteosomal Regulatory Particle AAA-ATPase-3 in Arabidopsis impairs the light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA

  • Eric D. Brenner
  • Philip Feinberg
  • Suzan Runko
  • Gloria M. Coruzzi
Article

Abstract

BMAA is a cycad-derived glutamate receptor agonist that causes a two- to three-fold increase in hypocotyl elongation on Arabidopsis seedlings grown in the light. To probe the role of plant glutamate receptors and their downstream mediators, we utilized a previously described genetic screen to identify a novel, BMAA insensitive morphology (bim) mutant, bim409. The normal BMAA-induced hypocotyl elongation response observed on wild-type seedlings grown in the light is impaired in the bim409 mutant. This BMAA-induced phenotype is light-specific, as the bim409 mutant exhibits normal hypocotyl elongation in etiolated (dark grown) plants (+ or − BMAA). The mutation in bim409 was identified to be in a gene encoding the Proteosomal Regulatory Particle AAA-ATPase-3 (RPT3). Possible roles of the proteosome in Glu-mediated signaling in plants is discussed.

Keywords

Glutamate receptors Proteasome BMAA Hypocotyl elongation 

Notes

Acknowledgments

We would like to thank Rachel Dunmeyer and Soojin Ahn for their helpful assistance in the lab. We would like to thank Richard Bonneau (NYU Center for Genomics & Systems Biology) for providing an in silico prediction of the Arabidopsis rpt3-1 3D structure. We would also like to express gratitude to Prof. Danny Chamovitz for his helpful comments on this article and insights into this project. This work was supported in part by NIH Grant GM032877 to GC and the Lowenstein and Ambrose Monell Foundations to The New York Botanical Garden.

Supplementary material

11103_2009_9489_MOESM1_ESM.xls (38 kb)
(XLS 38 kb)

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815. doi: 10.1038/35048692 CrossRefGoogle Scholar
  2. Bateman A et al (2004) The Pfam protein families database. Nucleic Acids Res 32(Database issue):D138–D141. doi: 10.1093/nar/gkh121 PubMedCrossRefGoogle Scholar
  3. Bennetzen J (2002) The rice genome. Opening the door to comparative plant biology. Science 296(5565):60–63. doi: 10.1126/science.1071402 PubMedCrossRefGoogle Scholar
  4. Bieniossek C et al (2006) The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci USA 103(9):3066–3071. doi: 10.1073/pnas.0600031103 PubMedCrossRefGoogle Scholar
  5. Brenner ED et al (2000) Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist. Plant Physiol 124(4):1615–1624. doi: 10.1104/pp.124.4.1615 PubMedCrossRefGoogle Scholar
  6. Brukhin V et al (2005) The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. Plant Cell 17(10):2723–2737. doi: 10.1105/tpc.105.034975 PubMedCrossRefGoogle Scholar
  7. Chiu J et al (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16(6):826–838PubMedGoogle Scholar
  8. Chiu JC et al (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19(7):1066–1082PubMedGoogle Scholar
  9. Chivian D et al (2003) Automated prediction of CASP-5 structures using the Robetta server. Proteins 53(Suppl 6):524–533. doi: 10.1002/prot.10529 PubMedCrossRefGoogle Scholar
  10. Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127(3):579–589. doi: 10.1016/j.cell.2006.09.028 PubMedCrossRefGoogle Scholar
  11. Chory J et al (1989) Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1(9):867–880PubMedCrossRefGoogle Scholar
  12. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x PubMedCrossRefGoogle Scholar
  13. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469. doi: 10.1104/pp.103.027979 PubMedCrossRefGoogle Scholar
  14. Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124(4):1511–1514. doi: 10.1104/pp.124.4.1511 PubMedCrossRefGoogle Scholar
  15. Dubos C et al (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35(6):800–810. doi: 10.1046/j.1365-313X.2003.01849.x PubMedCrossRefGoogle Scholar
  16. Finn R, Griffiths-Jones S, Bateman A (2003) Identifying protein domains with the Pfam database. Curr Protoc Bioinformatics, Chapter 2, Unit 2.5Google Scholar
  17. Fu H et al (1999a) Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. Plant J 18(5):529–539. doi: 10.1046/j.1365-313X.1999.00479.x PubMedCrossRefGoogle Scholar
  18. Fu H et al (1999b) Structure and functional analysis of the 26S proteasome subunits from plants. Mol Biol Rep 26(1–2):137–146. doi: 10.1023/A:1006926322501 PubMedCrossRefGoogle Scholar
  19. Ginalski K et al (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19(8):1015–1018. doi: 10.1093/bioinformatics/btg124 PubMedCrossRefGoogle Scholar
  20. Hansen KB, Yuan H, Traynelis SF (2007) Structural aspects of AMPA receptor activation, desensitization and deactivation. Curr Opin Neurobiol 17(3):281–288. doi: 10.1016/j.conb.2007.03.014 PubMedCrossRefGoogle Scholar
  21. Holm M et al (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16(10):1247–1259. doi: 10.1101/gad.969702 PubMedCrossRefGoogle Scholar
  22. Huang W et al (2006) The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell 18(10):2479–2492. doi: 10.1105/tpc.106.045013 PubMedCrossRefGoogle Scholar
  23. Jang IC, Yang JY, Seo HS, Chua NH (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19:593–602PubMedCrossRefGoogle Scholar
  24. Kato A et al (2005) Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci USA 102(15):5600–5605. doi: 10.1073/pnas.0501769102 PubMedCrossRefGoogle Scholar
  25. Kurepa J, Toh EA, Smalle JA (2007) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53:102–114PubMedCrossRefGoogle Scholar
  26. Lam HM et al (1998) Glutamate-receptor genes in plants. Nature 396(6707):125–126. doi: 10.1038/24066 PubMedCrossRefGoogle Scholar
  27. Lee SJ et al (2005) E3 ubiquitin ligase RNF2 interacts with the S6′ proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6′. Biochem J 389(Pt 2):457–463. doi: 10.1042/BJ20041982 PubMedGoogle Scholar
  28. Lee J et al (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19(3):731–749. doi: 10.1105/tpc.106.047688 PubMedCrossRefGoogle Scholar
  29. Liscum E, Hangarter RP (1991) Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation. Plant Cell 3(7):685–694PubMedCrossRefGoogle Scholar
  30. Meyerhoff O et al (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222(3):418–427. doi: 10.1007/s00425-005-1551-3 PubMedCrossRefGoogle Scholar
  31. Muller D, Joly M, Lynch G (1988) Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242(4886):1694–1697. doi: 10.1126/science.2904701 PubMedCrossRefGoogle Scholar
  32. Osterlund MT et al (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405(6785):462–466. doi: 10.1038/35013076 PubMedCrossRefGoogle Scholar
  33. Patrick GN et al (2003) Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr Biol 13(23):2073–2081. doi: 10.1016/j.cub.2003.10.028 PubMedCrossRefGoogle Scholar
  34. Peng Z, Serino G, Deng XW (2001) Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted developmental processes in Arabidopsis. Plant Cell 13(11):2393–2407PubMedCrossRefGoogle Scholar
  35. Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142(3):963–971. doi: 10.1104/pp.106.088989 PubMedCrossRefGoogle Scholar
  36. Salinas GD et al (2006) Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin–proteasome pathway. J Biol Chem 281(52):40164–40173. doi: 10.1074/jbc.M608194200 PubMedCrossRefGoogle Scholar
  37. Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999PubMedCrossRefGoogle Scholar
  38. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590. doi: 10.1146/annurev.arplant.55.031903.141801 PubMedCrossRefGoogle Scholar
  39. Smalle J et al (2002) Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell 14(1):17–32. doi: 10.1105/tpc.010381 PubMedCrossRefGoogle Scholar
  40. Smalle J et al (2003) The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 15(4):965–980. doi: 10.1105/tpc.009217 PubMedCrossRefGoogle Scholar
  41. Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146(2):529–538. doi: 10.1104/pp.107.108134 PubMedCrossRefGoogle Scholar
  42. Sun L, Tobin EM (1990) Phytochrome-regulated expression of genes encoding light-harvesting chlorophyll a/b-protein in two long hypocotyl mutants and wild type plants of Arabidopsis thaliana. Photochem Photobiol 52(1):51–56. doi: 10.1111/j.1751-1097.1990.tb01754.x PubMedCrossRefGoogle Scholar
  43. Ueda M et al (2004) The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. Development 131(9):2101–2111. doi: 10.1242/dev.01096 PubMedCrossRefGoogle Scholar
  44. Vandenbussche F et al (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J 49(3):428–441. doi: 10.1111/j.1365-313X.2006.02973.x PubMedCrossRefGoogle Scholar
  45. Walch-Liu P et al (2006) Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47(8):1045–1057. doi: 10.1093/pcp/pcj075 PubMedCrossRefGoogle Scholar
  46. Wang H et al (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294(5540):154–158. doi: 10.1126/science.1063630 PubMedCrossRefGoogle Scholar
  47. Yang P et al (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279(8):6401–6413. doi: 10.1074/jbc.M311977200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eric D. Brenner
    • 1
    • 3
  • Philip Feinberg
    • 1
  • Suzan Runko
    • 2
  • Gloria M. Coruzzi
    • 2
  1. 1.The International Plant Science CenterThe New York Botanical GardenBronxUSA
  2. 2.Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA
  3. 3.GenomicsThe New York Botanical GardenBronxUSA

Personalised recommendations