Advertisement

Plant Molecular Biology

, Volume 70, Issue 4, pp 457–469 | Cite as

Comprehensive analysis of the regulatory roles of auxin in early transdifferentiation into xylem cells

  • Saiko YoshidaEmail author
  • Kuninori Iwamoto
  • Taku Demura
  • Hiroo FukudaEmail author
Article

Abstract

Auxin is essential for the formation of the vascular system. We previously reported that a polar auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) decreased intracellular auxin levels and prevented tracheary element (TE) differentiation from isolated Zinnia mesophyll cells, but that additional auxin, 1-naphthaleneacetic acid (NAA) overcame this inhibition. To understand the role of auxin in gene regulation during TE differentiation, we performed microarray analysis of genes expressed in NPA-treated cells and NPA–NAA-treated cells. The systematic gene expression analysis revealed that NAA promoted the expression of genes related to auxin signaling and transcription factors that are known to be key regulators of differentiation of procambial and xylem precursor cells. NAA also promoted the expression of genes related to biosynthesis and metabolism of other plant hormones, such as cytokinin, gibberellin and brassinosteroid. Interestingly, detailed analysis showed that NAA rapidly induces the expression of auxin carrier gene homologues. It suggested a positive feedback loop for auxin-regulating vascular differentiation. Based on these results, we discuss the auxin function in early processes of transdifferentiation into TEs.

Keywords

Auxin Microarray NPA Tracheary element differentiation Zinnia elegans 

Abbreviations

ABA

Abscisic acid

BL

Brassinolide

BR

Brassinosteroid

CT

Cathasterone

CS

Castasterone

6-DeoxoCT

6-Deoxocathasterone

DMSO

Dimethyl sulfoxide

DR5

Synthetic auxin-inducible promoter

IAA

Indole-3-acetic acid

JA

Jasmonic acid

NAA

1-Naphthaleneacetic acid

NPA

1-N-Naphthylphthalamic acid

TE

Tracheary element

Notes

Acknowledgments

We thank Prof. Ken Matsuoka, Tomoko Narisawa, Mami Sasaki (RIKEN Plant Science Center) for technical advice of cDNA microarray; Prof. Thomas Schmülling (Free University of Berlin) for providing us pAtCKX::GUS transgenic line; Dr. Klahre Ulrich (University of Bern) for helpful comments on the manuscript; Yoichi Yokogawa for useful advice of microarray analysis. This work was supported in part by Grants-in-Aid from MEXT, Japan (19060009 to HF), and the Japan Society for the Promotion of Science (20247003 to HF).

Supplementary material

11103_2009_9485_MOESM1_ESM.xls (35 kb)
(XLS 35 kb)
11103_2009_9485_MOESM2_ESM.xls (178 kb)
(XLS 178 kb)
11103_2009_9485_MOESM3_ESM.xls (54 kb)
(XLS 54 kb)
11103_2009_9485_MOESM4_ESM.xls (21 kb)
(XLS 21 kb)
11103_2009_9485_MOESM5_ESM.xls (36 kb)
(XLS 35 kb)
11103_2009_9485_MOESM6_ESM.xls (3.3 mb)
(XLS 3418 kb)
11103_2009_9485_MOESM7_ESM.xls (4.8 mb)
(XLS 4910 kb)
11103_2009_9485_MOESM8_ESM.tif (1.3 mb)
(TIFF 1307 kb)

References

  1. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17. doi: 10.1104/pp.111.1.9 PubMedCrossRefGoogle Scholar
  2. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the ATHB-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182PubMedGoogle Scholar
  3. Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810–823. doi: 10.1101/gad.462608 PubMedCrossRefGoogle Scholar
  4. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602. doi: 10.1016/S0092-8674(03)00924-3 PubMedCrossRefGoogle Scholar
  5. Berleth T, Jürgens G (1993) The role of the MONOPTEROS gene in organising the basal body region of the Arabidopsis embryo. Development 118:575–587Google Scholar
  6. Berleth T, Mattsson J (2000) Vascular development; tracing signals along veins. Curr Opin Plant Biol 3:406–411. doi: 10.1016/S1369-5266(00)00104-7 PubMedCrossRefGoogle Scholar
  7. Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393. doi: 10.1016/S1360-1385(00)01725-8 PubMedCrossRefGoogle Scholar
  8. Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690. doi: 10.1104/pp.103.032169 PubMedCrossRefGoogle Scholar
  9. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi: 10.1038/nature03184 PubMedCrossRefGoogle Scholar
  10. Brugiere N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240. doi: 10.1104/pp.102.017707 PubMedCrossRefGoogle Scholar
  11. Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868. doi: 10.1101/gad.432607 PubMedCrossRefGoogle Scholar
  12. Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243PubMedCrossRefGoogle Scholar
  13. Church DL, Galston AW (1988) Hormonal induction and antihormonal inhibition of tracheary element differentiation in Zinnia cell cultures. Phytochemistry 27:2435–2439. doi: 10.1016/0031-9422(88)87008-0 PubMedCrossRefGoogle Scholar
  14. Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799. doi: 10.1073/pnas.232590499 PubMedCrossRefGoogle Scholar
  15. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119. doi: 10.1016/j.devcel.2005.05.014 PubMedCrossRefGoogle Scholar
  16. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12. doi: 10.1016/S1369526602000031 PubMedCrossRefGoogle Scholar
  17. Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156. doi: 10.1105/tpc.9.7.1147 PubMedCrossRefGoogle Scholar
  18. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391. doi: 10.1038/nrm1364 PubMedCrossRefGoogle Scholar
  19. Fukuda H, Komamine A (1980) Establishment of an experimental system for the tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60. doi: 10.1104/pp.65.1.57 PubMedCrossRefGoogle Scholar
  20. Fukuda H, Komamine A (1981) Relationship between tracheary element differentiation and DNA synthesis in single cells isolated from the mesophyll of Zinnia elegans—analysis by inhibitors of DNA synthesis. Plant Cell Physiol 22:41–49Google Scholar
  21. Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155:423–430. doi: 10.1007/BF00394471 CrossRefGoogle Scholar
  22. Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997. doi: 10.1101/gad.905201 PubMedCrossRefGoogle Scholar
  23. Groover AT, Pattishall A, Jones AM (2003) IAA8 expression during vascular cell differentiation. Plant Mol Biol 51:427–435. doi: 10.1023/A:1022039815537 PubMedCrossRefGoogle Scholar
  24. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385. doi: 10.1023/A:1015207114117 PubMedCrossRefGoogle Scholar
  25. Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES (2001) A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28:201–208. doi: 10.1046/j.1365-313X.2001.01150.x PubMedCrossRefGoogle Scholar
  26. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845. doi: 10.1126/science.1128436 PubMedCrossRefGoogle Scholar
  27. Kang J, Dengler N (2002) Cell cycling frequency and expression of the homeobox gene ATHB-8 during leaf vein development in Arabidopsis. Planta 216:212–219. doi: 10.1007/s00425-002-0847-9 PubMedCrossRefGoogle Scholar
  28. Klee H, Estelle M (1991) Morecular genetic approaches to plant hormone biology. Annu Rev Plant Physiol Plant Mol Biol 42:529–551. doi: 10.1146/annurev.pp.42.060191.002525 CrossRefGoogle Scholar
  29. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860. doi: 10.1101/gad.1331305 PubMedCrossRefGoogle Scholar
  30. Kuriyama H, Fukuda H (2001) Regulation of tracheary element differentiation. J Plant Growth Regul 20:35–51. doi: 10.1007/s003440010006 CrossRefGoogle Scholar
  31. Lasswell J, Rogg LE, Nelson DC, Rongey C, Bartel B (2000) Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 12:2395–2408PubMedCrossRefGoogle Scholar
  32. Leyser O (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822. doi: 10.1016/j.cell.2005.06.005 PubMedCrossRefGoogle Scholar
  33. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400. doi: 10.1023/A:1015255030047 PubMedCrossRefGoogle Scholar
  34. Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98. doi: 10.1126/science.1118875 PubMedCrossRefGoogle Scholar
  35. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991PubMedGoogle Scholar
  36. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339. doi: 10.1104/pp.013623 PubMedCrossRefGoogle Scholar
  37. Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878. doi: 10.1038/nature02613 PubMedCrossRefGoogle Scholar
  38. Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323. doi: 10.1073/pnas.96.26.15316 PubMedCrossRefGoogle Scholar
  39. Ohashi-Ito K, Fukuda H (2003) HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol 44:1350–1358. doi: 10.1093/pcp/pcg164 PubMedCrossRefGoogle Scholar
  40. Ohashi-Ito K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant Cell Physiol 43:1146–1153. doi: 10.1093/pcp/pcf135 PubMedCrossRefGoogle Scholar
  41. Ohashi-Ito K, Demura T, kubo M, Fukuda H (2005) Class III homeodomain leucine–zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46:1646–1656. doi: 10.1093/pcp/pci180 PubMedCrossRefGoogle Scholar
  42. Ozeki Y, Masui K, Sakuta M, Matsuoka M, Ohashi Y, Kano-Murakami Y, Yamamoto N, Tanaka Y (1990) Differential regulations of phenylalanine ammonia-lyase genes during anthocyanin synthesis and by transfer effect in carrot cell suspension cultures. Physiol Plant 80:379–387. doi: 10.1034/j.1399-3054.1990.800308.x CrossRefGoogle Scholar
  43. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260. doi: 10.1038/nature02081 PubMedCrossRefGoogle Scholar
  44. Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:152–262Google Scholar
  45. Sachs T (1991) Cell polarity and tissue patterning in plants. Development 91:83–93Google Scholar
  46. Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41:649–656PubMedGoogle Scholar
  47. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027. doi: 10.1101/gad.1402406 PubMedCrossRefGoogle Scholar
  48. Schmulling T, Werner T, Riefler M, Krupkova E, Bartrina Y, Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252. doi: 10.1007/s10265-003-0096-4 PubMedCrossRefGoogle Scholar
  49. Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190. doi: 10.1104/pp.121.4.1179 PubMedCrossRefGoogle Scholar
  50. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859. doi: 10.1038/nrm2020 PubMedCrossRefGoogle Scholar
  51. Tokunaga N, Uchimura N, Sato Y (2006) Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Protoplasma 228:179–187. doi: 10.1007/s00709-006-0180-4 PubMedCrossRefGoogle Scholar
  52. Trentmann SM, Kende H (1995) Analysis of Arabidopsis cDNA that shows homology to the tomato E8 cDNA. Plant Mol Biol 29:161–166. doi: 10.1007/BF00019127 PubMedCrossRefGoogle Scholar
  53. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133:1643–1653. doi: 10.1104/pp.103.030882 PubMedCrossRefGoogle Scholar
  54. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637. doi: 10.1073/pnas.190309197 PubMedCrossRefGoogle Scholar
  55. Wenzel CL, Hester Q, Mattsson J (2008) Identification of genes expressed in vascular tissues using NPA-induced vascular overgrowth in Arabidopsis. Plant Cell Physiol 49:457–468. doi: 10.1093/pcp/pcn023 PubMedCrossRefGoogle Scholar
  56. Werner T, Motyka V, Laucou V, Van Smets R, Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550. doi: 10.1105/tpc.014928 PubMedCrossRefGoogle Scholar
  57. Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983PubMedGoogle Scholar
  58. Yamamoto R, Fujioka s, Demura T, Takatsuto S, Yoshida S, Fukuda H (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563. doi: 10.1104/pp.125.2.556 PubMedCrossRefGoogle Scholar
  59. Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H (2007) Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol 48:74–83. doi: 10.1093/pcp/pcl039 PubMedCrossRefGoogle Scholar
  60. Yazaki J, Kishimoto N, Nakamura K, Fujii F, Shimbo K, Otsuka Y, Wu J, Yamamoto K, Sakata K, Sasaki T, Kikuchi S (2000) Embarking on rice functional genomics via cDNA microarray: use of 3′ UTR probes for specific gene expression analysis. DNA Res 7:367–370. doi: 10.1093/dnares/7.6.367 PubMedCrossRefGoogle Scholar
  61. Yoshida S, Kuriyama H, Fukuda H (2005) Inhibition of transdifferentiation into tracheary elements by polar auxin transport inhibitors through intracellular auxin depletion. Plant Cell Physiol 46:2019–2028. doi: 10.1093/pcp/pci217 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo-ku, TokyoJapan
  2. 2.Plant Science CenterRIKENYokohama-shiJapan
  3. 3.Institute of Plant SciencesUniversity of BernBernSwitzerland

Personalised recommendations