Plant Molecular Biology

, Volume 70, Issue 4, pp 421–442 | Cite as

BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression



Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by “in silico” northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members’ evolutionary relationships and gene functions implicated in plant growth, development and metabolism.


Acyl CoA-dependent acyltransfease BAHD enzymes Populus trichocarpa Arabidopsis thaliana Gene expression 



Authors would like to thank Dr. Gray Tuskan in Oak Ridge National Laboratory for providing additional P. trichocarpa plantlets. This work was supported by the DOE -USDA joint Plant Feedstock Genomics program (Project no: Bo-135) and the Laboratory Directed Research and Development program (LDRD-07-047) of Brookhaven National Laboratory under contract with Department of Energy to C.J.L.

Supplementary material

11103_2009_9482_MOESM1_ESM.eps (1.6 mb)
Supplementary Figure 1 Phylogenic analysis of Populus and Arabidopsis putative BAHD superfamily proteins. The neighbor-joining tree was constructed using aligned full-length amino-acid sequences of 77 Populus-, 52 Arabidopsis-BAHD members, and 51 function-known acyl-CoA dependent acyltransferases from other species as described in Fig. 1. (EPS 1675 kb)
11103_2009_9482_MOESM2_ESM.eps (4.8 mb)
Supplementary Figure 2 “In silico” northern analysis of poplar BAHD genes expressed in wood tissues. The data was retrieved from PopulusDB EST databases ( (EPS 4880 kb)
11103_2009_9482_MOESM3_ESM.pdf (29 kb)
Supplementary Figure 3 Quantitative RT-PCR analysis of PtACT38, 58 and 81 in different tissues of P. trichocarpa. The expressions were normalized with the leaf expression level in each sample. (PDF 29 kb)
11103_2009_9482_MOESM4_ESM.eps (1004 kb)
Supplementary Figure 4 Microarray data of Arabidopsis BAHD gene expression. The gene expressions of BAHD members cluster hierarchically with irx 3-4, irx7, irx 8 and irx9 genes. Results are shown as heat maps in blue/white coding, where the darker blue represents the stronger expression. At1g31490, its expression is correlated closely to that of polysaccharide genes, as highlighted in bold. (EPS 1005 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165. doi:10.1111/j.1365-313X.2005.02584.x PubMedCrossRefGoogle Scholar
  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:769–815. doi:10.1038/35048623 CrossRefGoogle Scholar
  4. Balatinecz JJ, Kretschmann DE, Leclerc A (2001) Achievements in the utilization of poplar wood—guideposts for the future. For Chron 77:265–269Google Scholar
  5. Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878. doi:10.1104/pp.104.042580 PubMedCrossRefGoogle Scholar
  6. Biely P, MacKenzie CR, Puls J, Schneider H (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology 4:731–733. doi:10.1038/nbt0886-731 CrossRefGoogle Scholar
  7. Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144. doi:10.1101/gr.751803 PubMedCrossRefGoogle Scholar
  8. Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in Petunia petal tissue. Plant Physiol 135:1993–2011. doi:10.1104/pp.104.045468 PubMedCrossRefGoogle Scholar
  9. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetc analysis of chromosomal duplication events. Nature 422:433–438. doi:10.1038/nature01521 PubMedCrossRefGoogle Scholar
  10. Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168PubMedGoogle Scholar
  11. Burhenne K, Kristensen BK, Rasmussen SK (2003) A new class of N-Hydroxycinnamoyltransferases. Purification, cloning and expression of a barley agmatine counaroyltransferase (EC J Biol Chem 278:13919–13927. doi:10.1074/jbc.M213041200 PubMedCrossRefGoogle Scholar
  12. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600. doi:10.1034/j.1399-3054.2002.1140413.x PubMedCrossRefGoogle Scholar
  13. Chick WS, Leung PC (1997) Immunopurification and characterization of a 40-kD 1-aminocyclopropane-1-carboxylic acid N-malonyltransferase from mung bean seedling hypocotyls. Plant Physiol 113:119–126. doi:10.1104/pp.113.1.119 PubMedCrossRefGoogle Scholar
  14. Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577. doi:10.1093/nar/gkh133 PubMedCrossRefGoogle Scholar
  15. D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340. doi:10.1016/j.pbi.2006.03.016 PubMedCrossRefGoogle Scholar
  16. D’Auria JC, Chen F, Pichersky E (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol 130:466–476. doi:10.1104/pp.006460 PubMedCrossRefGoogle Scholar
  17. D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007a) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49:194–207. doi:10.1111/j.1365-313X.2006.02946.x PubMedCrossRefGoogle Scholar
  18. D’Auria JC, Reichelt M, Luch K, Svatos A, Gershenzon J (2007b) Identification and characterization of the BAHD acyltransferase malonyl CoA: Anthocyanidin 5-O-glucoside-6’’-O-malonyltransferase (At5MAT) in Arabidopsis thaliana. FEBS Lett 581:872–878. doi:10.1016/j.febslet.2007.01.060 PubMedCrossRefGoogle Scholar
  19. de Sá MM, Subramaniam R, Williams FE, Douglas CJ (1992) Rapid activation of phenylpropanoid metabolism in elicitor-treated hybrid poplar (Populus trichocarpa torr. & gray X Populus deltoides Marsh) suspension-cultured cells. Plant Physiol 98:728–737. doi:10.1104/pp.98.2.728 PubMedCrossRefGoogle Scholar
  20. Defilippi BG, Dandekar AM, Kader AA (2005) Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J Agric Food Chem 53:3133–3141. doi:10.1021/jf047892x PubMedCrossRefGoogle Scholar
  21. Dexter R, Qualley A, Kish CM, Je Ma C, Koeduka T, Nagegowda DA, Dudareva N, Pichersky E, Clark D (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265–275. doi:10.1111/j.1365-313X.2006.02954.x PubMedCrossRefGoogle Scholar
  22. Dudareva N, D’Auria JC, Nam KH, Raguso RA, Pichersky E (1998) Acetyl-CoA:benzylalcohol acetyltransferase—an enzyme involved in floral scent production in Clarkia breweri. Plant J 14:297–304PubMedCrossRefGoogle Scholar
  23. Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633. doi:10.1104/pp.122.3.627 PubMedCrossRefGoogle Scholar
  24. El-Sharkawy I, Manríquez D, Flores FB, Regad F, Bouzayen M, Latché A, Pech JC (2005) Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity. Plant Mol Biol 59:345–362. doi:10.1007/s11103-005-8884-y PubMedCrossRefGoogle Scholar
  25. Emanuelsson O, Brunak S, von Heijne G, Nielsen HL (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protocols 2:953–971. doi:10.1038/nprot.2007.131 CrossRefGoogle Scholar
  26. Fraser CM, Rider LW, Chapple C (2005) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiol 138:1136–1148. doi:10.1104/pp.104.057950 PubMedCrossRefGoogle Scholar
  27. Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol Plant Mol Biol 37:165–186. doi:10.1146/annurev.arplant.37.1.165 CrossRefGoogle Scholar
  28. Fujiwara H, Tanaka Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Nakao M, Fukui Y, Yamaguchi M, Ashikari T, Kusumi T (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J 16:421–431. doi:10.1046/j.1365-313x.1998.00312.x PubMedCrossRefGoogle Scholar
  29. Gou JY, Park S, Yu XH, Miller LM, Liu CJ (2008) Compositional characterization and imaging of “wallbound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods. Planta 229:15–24. doi:10.1007/s00425-008-0799-9 PubMedCrossRefGoogle Scholar
  30. Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability I. Lignin-cell wall matrix interactions. C R Biol 327:455–465. doi:10.1016/j.crvi.2004.02.009 PubMedCrossRefGoogle Scholar
  31. Greenaway W, Whatley FR (1990) Analysis of phenolics of bud exudate of Populus angustifolia by GC-MS. Phytochemistry 29:2551–2554. doi:10.1016/0031-9422(90)85186-J CrossRefGoogle Scholar
  32. Guo L, Phillips AT, Arteca RN (1993) Amino acid N-malonyltransferases from mung beans. Action on 1-aminocyclopropane-1-carboxylic acid and d-phenylalanine. J Biol Chem 268:25389–25394PubMedGoogle Scholar
  33. Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026. doi:10.1360/yc-007-1023 PubMedGoogle Scholar
  34. Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407. doi:10.1002/(SICI)1097-0010(19990301)79:3<403::AID-JSFA263>3.0.CO;2-0 CrossRefGoogle Scholar
  35. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379. doi:10.1093/bioinformatics/14.4.378 PubMedCrossRefGoogle Scholar
  36. Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103. doi:10.1074/jbc.M209362200 PubMedCrossRefGoogle Scholar
  37. Hortensteiner S (1998) NCC malonyltransferase catalyses the final step of chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49:953–956. doi:10.1016/S0031-9422(98)00001-6 PubMedCrossRefGoogle Scholar
  38. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nuc Acids Res 35:W585–W587. doi:10.1093/nar/gkm259 CrossRefGoogle Scholar
  39. Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320PubMedGoogle Scholar
  40. Ishii T (1997) O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol 113:1265–1272. doi:10.1104/pp.113.4.1265 PubMedCrossRefGoogle Scholar
  41. Kato Y, Nevins DJ (1984) Enzymic dissociation of Zea shoot cell wall polysaccharides : IV. Dissociation of glucuronoarabinoxylan by purified endo-(1–4)-beta-xylanase from Bacillus subtilis. Plant Physiol 75:759–765. doi:10.1104/pp.75.3.759 PubMedCrossRefGoogle Scholar
  42. Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46. doi:10.1105/tpc.010215 PubMedCrossRefGoogle Scholar
  43. Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137:220–230. doi:10.1104/pp.104.045377 PubMedCrossRefGoogle Scholar
  44. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315 PubMedCrossRefGoogle Scholar
  45. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5:150–163. doi:10.1186/1471-2105-5-150 PubMedCrossRefGoogle Scholar
  46. Lindroth RL, Hwang S-Y (1996) Diversity, redundancy and multiplicity in chemical defense systems of aspen. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York, pp 25–54Google Scholar
  47. Luo J, Nishiyama Y, Fuell C, Taguchi G, Elliott K, Hill L, Tanaka Y, Kitayama M, Yamazaki M, Bailey P, Parr A, Michael AJ, Saito K, Martin C (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyltransferases from Arabidopsis thaliana. Plant J 50:678–695. doi:10.1111/j.1365-313X.2007.03079.x PubMedCrossRefGoogle Scholar
  48. Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333. doi:10.1105/tpc.108.063511 PubMedCrossRefGoogle Scholar
  49. Ma X, Koepke J, Panjikar S, Fritzsch G, Stockigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583. doi:10.1074/jbc.M414508200 PubMedCrossRefGoogle Scholar
  50. Martin MN, Saftner RA (1995) Purification and characterization of 1-aminocyclopropane-1-carboxylic acid N-malonyltransferase from tomato fruit. Plant Physiol 108:1241–1249PubMedGoogle Scholar
  51. Nakayama T (2005) Plant acyltransferase family. Seikagaku 77:343–347PubMedGoogle Scholar
  52. Nakayama T, Suzuki H, Nishino T (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J Mol Catal B Enzym 23:117–132. doi:10.1016/S1381-1177(03)00078-X CrossRefGoogle Scholar
  53. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6. doi:10.1093/protein/10.1.1 PubMedCrossRefGoogle Scholar
  54. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754. doi:10.1038/nbt966 PubMedCrossRefGoogle Scholar
  55. Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  56. Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004) Peroxidase dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96. doi:10.1023/B:PHYT.0000047811.13837.fb CrossRefGoogle Scholar
  57. Renard CC, Jarvis MC (1999) Acetylation and methylation of homogalacturonans 1: optimisation of the reaction and characterization of the products. Carbohydr Polym 39:201–207. doi:10.1016/S0144-8617(99)00006-5 CrossRefGoogle Scholar
  58. Rosa N, Neish AC (1968) Formation and occurrence of N-malonylphenylalanine and related compounds in plants. Can J Biochem 46:797–806CrossRefGoogle Scholar
  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  60. Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292. doi:10.1105/tpc.104.024190 PubMedCrossRefGoogle Scholar
  61. Silverstone AL, Bloom C, Yang SF (1992) Partial purification and characterization of the auxin biosynthetic enzyme d-tryptophan-N-malonyltransferase from peanut. Plant Physiol 99:S-18Google Scholar
  62. Steffens JC (2000) Acyltransferases in protease’s clothing. Plant Cell 12:1253–1256PubMedCrossRefGoogle Scholar
  63. Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Jonsson Lindval J, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhle’n M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956. doi:10.1073/pnas.0401641101 PubMedCrossRefGoogle Scholar
  64. St-Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. In: Romeo JT et al (eds) Recent advances in phytochemistry. Evolution of metabolic pathway, vol 34. Elsevier, Amsterdam, pp 285–315Google Scholar
  65. St-Pierre B, Laflamme P, Alarco A-M, De Luca V (1998) The terminal O-acyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzymes A-dependent ayl transfer. Plant J 14:703–713. doi:10.1046/j.1365-313x.1998.00174.x PubMedCrossRefGoogle Scholar
  66. Suzuki H, Nakayama T, Yonekura-Sakakibara KFY, Nakamura N, Nakao M, Tanaka Y, Yamaguchi MA, Kusumi T, Nishino T (2001) Malonyl-CoA:anthocyanin 5-O-glucoside-6”‘-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. Enzyme purification, gene cloning, expression, and characterization. J Biol Chem 276:49013–49019. doi:10.1074/jbc.M108444200 PubMedCrossRefGoogle Scholar
  67. Suzuki H, Sawada S, Watanabe K, Nagae S, Yamaguchi MA, Nakayama T, Nishino T (2004) Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J 38:994–1003. doi:10.1111/j.1365-313X.2004.02101.x PubMedCrossRefGoogle Scholar
  68. Tenkanen M (1998) Action of trichoderma reesei and aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27(Pt 1):19–24PubMedGoogle Scholar
  69. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  70. Timell TE (1969) The chemical composition of tension wood. Svensk papperstidning 72:173–181Google Scholar
  71. Tumaney AW, Shekar S, Rajasekharan R (2001) Identification, purification, and characterization of monoacylglycerol acyltransferase from developing peanut cotyledons. J Biol Chem 276:10847–10852PubMedGoogle Scholar
  72. Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  73. Tusnády GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: applications to topology prediction. J Mol Biol 283:489–506. doi:10.1006/jmbi.1998.2107 PubMedCrossRefGoogle Scholar
  74. Walker K, Long R, Croteau R (2002) The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc Natl Acad Sci USA 99:9166–9171. doi:10.1073/pnas.082115799 PubMedCrossRefGoogle Scholar
  75. Xia Y, Nikolau BJ, Schnable PS (1997) Development and hormonal regulation of the Arabidopsis CER2 gene that codes a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol 115:925–937. doi:10.1104/pp.115.3.925 PubMedCrossRefGoogle Scholar
  76. Yang Q, Reinhard K, Schiltz E, Matern U (1997) Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol Biol Rep 35:777–789. doi:10.1023/A:1005878622437 CrossRefGoogle Scholar
  77. Yang Q, Trinh H, Imai XS, Ishihara A, Zhang L, Nakayashiki H, Tosa Y, Mayama S (2004) Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol Plant Microbe Interact 17:81–89. doi:10.1094/MPMI.2004.17.1.81 PubMedCrossRefGoogle Scholar
  78. Yu XH, Chen MH, Liu CJ (2008) Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Plant J 55:382–396. doi:10.1111/j.1365-313X.2008.03509.x PubMedCrossRefGoogle Scholar
  79. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp.104.046367 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyBrookhaven National LaboratoryUptonUSA

Personalised recommendations