Plant Molecular Biology

, Volume 70, Issue 4, pp 385–401 | Cite as

Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress

  • Catalina Arenas-Huertero
  • Beatriz Pérez
  • Fernando Rabanal
  • Daniel Blanco-Melo
  • Carlos De la Rosa
  • Georgina Estrada-Navarrete
  • Federico Sanchez
  • Alejandra Alicia Covarrubias
  • José Luis Reyes


MicroRNAs (miRNAs) are small RNA molecules recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data. We are interested in the identification of miRNAs in Phaseolus vulgaris (common bean) to uncover different plant strategies to cope with adverse conditions and because of its relevance as a crop in developing countries. Here we present the identification of conserved and candidate novel miRNAs in P. vulgaris present in different organs and growth conditions, including drought, abscisic acid treatment, and Rhizobium infection. We also identified cDNA sequences in public databases that represent the corresponding miRNA precursors. In addition, we predicted and validated target mRNAs amongst reported EST and cDNAs for P. vulgaris. We propose that the novel miRNAs present in common bean and other legumes, are involved in regulation of legume-specific processes including adaptation to diverse external cues.


miRNAs Water deficit Glycine max Medicago truncatula Common bean Abscisic acid 



We thank the help of Jerome Verleyen and Roberto Rodríguez during the early phases of sequence analysis. This work was supported by grants from CONACyT, Mexico (J48740) and DGAPA-UNAM (IN-227706) to JLR, and JLR and AAC, respectively.

Supplementary material

11103_2009_9480_MOESM1_ESM.xls (24 kb)
Pre-miRNAs for conserved P. vulgaris miRNAs (XLS 24 kb)
11103_2009_9480_MOESM2_ESM.xls (48 kb)
Predicted miRNA targets for conserved miRNAs in P. vulgaris (XLS 48 kb)
11103_2009_9480_MOESM3_ESM.pdf (7.6 mb)
(PDF 7762 kb)


  1. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290. doi:10.1038/ng1478 PubMedCrossRefGoogle Scholar
  2. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221. doi:10.1016/j.cell.2005.04.004 PubMedCrossRefGoogle Scholar
  3. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673. doi:10.1105/tpc.105.032185 PubMedCrossRefGoogle Scholar
  4. Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, Depamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003. doi:10.1111/j.1365-313X.2007.03197.x PubMedCrossRefGoogle Scholar
  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5 PubMedCrossRefGoogle Scholar
  6. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24. doi:10.1104/pp.108.120725 PubMedCrossRefGoogle Scholar
  7. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513PubMedCrossRefGoogle Scholar
  8. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887. doi:10.1111/j.1365-313X.2008.03448.x PubMedCrossRefGoogle Scholar
  9. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. doi:10.1016/S1360-1385(97)82562-9 CrossRefGoogle Scholar
  10. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190. doi:10.1126/science.1159151 PubMedCrossRefGoogle Scholar
  11. Colmenero-Flores JM, Campos F, Garciarrubio A, Covarrubias AA (1997) Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Mol Biol 35:393–405. doi:10.1023/A:1005802505731 PubMedCrossRefGoogle Scholar
  12. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088. doi:10.1101/gad.402806 PubMedCrossRefGoogle Scholar
  13. Dezulian T, Palatnik JF, Huson DH, Weigel D (2005) Conservation and divergence of microRNA families in plants. Genome Biol 6:13. doi:10.1186/gb-2005-6-11-p13 CrossRefGoogle Scholar
  14. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200. doi:10.1101/gad.862301 PubMedCrossRefGoogle Scholar
  15. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219. doi:10.1371/journal.pone.0000219 PubMedCrossRefGoogle Scholar
  16. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043. doi:10.1016/j.cub.2005.10.016 PubMedCrossRefGoogle Scholar
  17. Gresshoff PM (2003) Post-genomic insights into plant nodulation symbioses. Genome Biol 4:201. doi:10.1186/gb-2003-4-1-201 PubMedCrossRefGoogle Scholar
  18. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi:10.1093/nar/gkj112 PubMedCrossRefGoogle Scholar
  19. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351. doi:10.1016/j.tplants.2007.06.013 PubMedCrossRefGoogle Scholar
  20. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363. doi:10.1371/journal.pbio.0020363 PubMedCrossRefGoogle Scholar
  21. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799. doi:10.1016/j.molcel.2004.05.027 PubMedCrossRefGoogle Scholar
  22. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. doi:10.1146/annurev.arplant.57.032905.105218 PubMedCrossRefGoogle Scholar
  23. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi:10.1038/nature02363 PubMedCrossRefGoogle Scholar
  24. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251. doi:10.1105/tpc.108.059444 PubMedCrossRefGoogle Scholar
  25. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619. doi:10.1105/tpc.003210 PubMedCrossRefGoogle Scholar
  26. Lu C, Meyers BC, Green PJ (2007a) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117. doi:10.1016/j.ymeth.2007.05.002 PubMedCrossRefGoogle Scholar
  27. Lu S, Sun YH, Amerson H, Chiang VL (2007b) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098. doi:10.1111/j.1365-313X.2007.03208.x PubMedCrossRefGoogle Scholar
  28. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151PubMedCrossRefGoogle Scholar
  29. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190PubMedCrossRefGoogle Scholar
  30. Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129. doi:10.1038/nature05903 PubMedCrossRefGoogle Scholar
  31. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141. doi:10.1016/j.cell.2008.02.033 PubMedCrossRefGoogle Scholar
  32. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi:10.1006/jmbi.2000.4042 PubMedCrossRefGoogle Scholar
  33. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363. doi:10.1038/nsmb.1409 PubMedCrossRefGoogle Scholar
  34. Pandey SP, Shahi P, Gase K, Baldwin IT (2008) Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA 105:4559–4564. doi:10.1073/pnas.0711363105 PubMedCrossRefGoogle Scholar
  35. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425. doi:10.1101/gad.1476406 PubMedCrossRefGoogle Scholar
  36. Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151. doi:10.1046/j.0016-8025.2001.00764.x PubMedCrossRefGoogle Scholar
  37. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606. doi:10.1111/j.1365-313X.2006.02980.x PubMedCrossRefGoogle Scholar
  38. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520. doi:10.1016/S0092-8674(02)00863-2 PubMedCrossRefGoogle Scholar
  39. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009. doi:10.1006/bbrc.2001.6299 PubMedCrossRefGoogle Scholar
  40. Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Kramer U, Kopka J, Udvardi MK (2008) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987. doi:10.1111/j.1365-313X.2007.03381.x PubMedCrossRefGoogle Scholar
  41. Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57. doi:10.1146/annurev.genet.32.1.33 PubMedCrossRefGoogle Scholar
  42. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527. doi:10.1016/j.devcel.2005.01.018 PubMedCrossRefGoogle Scholar
  43. Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112. doi:10.1126/science.1077937 PubMedCrossRefGoogle Scholar
  44. Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160. doi:10.1186/1471-2164-9-160 PubMedCrossRefGoogle Scholar
  45. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi:10.1105/tpc.104.022830 PubMedCrossRefGoogle Scholar
  46. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25. doi:10.1186/1471-2229-8-25 PubMedCrossRefGoogle Scholar
  47. Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593. doi:10.1186/1471-2164-9-593 PubMedCrossRefGoogle Scholar
  48. Valdes-Lopez O, Arenas-Huertero C, Ramirez M, Girard L, Sanchez F, Vance CP, Reyes JL, Hernandez G (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus deficiency signaling in common bean roots. Plant Cell Environ 31:1834–1843PubMedCrossRefGoogle Scholar
  49. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771. doi:10.1101/gad.1410506 PubMedCrossRefGoogle Scholar
  50. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218. doi:10.1242/dev.02602 PubMedCrossRefGoogle Scholar
  51. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183. doi:10.1105/tpc.010278 PubMedGoogle Scholar
  52. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94. doi:10.1016/j.tplants.2004.12.012 PubMedCrossRefGoogle Scholar
  53. Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8:R96. doi:10.1186/gb-2007-8-6-r96 PubMedCrossRefGoogle Scholar
  54. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259. doi:10.1111/j.1365-313X.2006.02697.x PubMedCrossRefGoogle Scholar
  55. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590. doi:10.1016/j.bbrc.2007.01.022 PubMedCrossRefGoogle Scholar
  56. Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008a) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788PubMedGoogle Scholar
  57. Zhou ZS, Huang SQ, Yang ZM (2008b) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542. doi:10.1016/j.bbrc.2008.07.083 PubMedCrossRefGoogle Scholar
  58. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. doi:10.1093/nar/gkg595 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Catalina Arenas-Huertero
    • 1
  • Beatriz Pérez
    • 1
  • Fernando Rabanal
    • 1
  • Daniel Blanco-Melo
    • 1
  • Carlos De la Rosa
    • 1
  • Georgina Estrada-Navarrete
    • 1
  • Federico Sanchez
    • 1
  • Alejandra Alicia Covarrubias
    • 1
  • José Luis Reyes
    • 1
  1. 1.Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations