Advertisement

Plant Molecular Biology

, Volume 70, Issue 3, pp 341–357 | Cite as

Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice

  • Yidan Ouyang
  • Jiongjiong Chen
  • Weibo Xie
  • Lei Wang
  • Qifa Zhang
Article

Abstract

The Hsp20 genes represent the most abundant small heat shock proteins (sHSPs) in plants. Hsp20 gene family has been shown to be involved in preventing heat shock and promoting resistance to environmental stress factors, but very little is known about this gene family in rice. Here, we report the identification and characterization of 39 OsHsp20 genes in rice, describing the gene structure, gene expression, genome localization, and phylogenetic relationship of each member. We have used RT-PCR to perform a characterization of the normal and heat shock-induced expression of selective OsHsp20 genes. A genome-wide microarray based gene expression analysis involving 25 stages of vegetative and reproductive development in three rice cultivars has revealed that 36 OsHsp20 genes were expressed in at least one of the experimental stages studied. Among these, transcripts of OsHsp20 were accumulated differentially during vegetative and reproductive developmental stages and preferentially down-regulated in Shanyou 63. In addition, OsHsp20 genes were identified as showing prominent heterosis in family-level expression. Our results suggest that the expression patterns of the OsHsp20 genes are diversified not only in developmental stages but also in variety level.

Keywords

Oryza sativa Heat shock Expression profiles Microarray Hsp20 gene family 

Abbreviations

HSP

Heat shock protein

sHSP

Small HSP

ACD

α-Crystallin domain

Os

Oryza sativa

At

Arabidopsis thaliana

ER

Endoplasmic reticulum

HSE

Heat shock response element

Hsf

Heat shock factor

bp

Base pair

aa

Amino acids

Notes

Acknowledgements

We thank two anonymous reviewers for their careful reading and helpful comments on this manuscript. This research was supported in part by grants from the National Special Key Project of China on Functional Genomics of Major Plants and Animals, and the National Natural Science Foundation of China.

Supplementary material

11103_2009_9477_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 44 kb)
11103_2009_9477_MOESM2_ESM.doc (56 kb)
Supplementary material 2 (DOC 56 kb)
11103_2009_9477_MOESM3_ESM.doc (96 kb)
Supplementary material 3 (DOC 96 kb)
11103_2009_9477_MOESM4_ESM.doc (29 kb)
Supplementary material 4 (DOC 29 kb)
11103_2009_9477_MOESM5_ESM.doc (38 kb)
Supplementary material 5 (DOC 38 kb)
11103_2009_9477_MOESM6_ESM.xls (162 kb)
Supplementary material 6 (XLS 162 kb)
11103_2009_9477_MOESM7_ESM.xls (24 kb)
Supplementary material 7 (XLS 24 kb)
11103_2009_9477_MOESM8_ESM.doc (104 kb)
Supplementary material 8 (DOC 103 kb)
11103_2009_9477_MOESM9_ESM.xls (22 kb)
Supplementary material 9 (XLS 22 kb)

References

  1. Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527. doi: 10.1046/j.1365-313X.1998.00056.x PubMedCrossRefGoogle Scholar
  2. Bienz M, Pelham HR (1987) Mechanisms of heat-shock gene activation in higher eukaryotes. Adv Genet 24:31–72. doi: 10.1016/S0065-2660(08)60006-1 PubMedCrossRefGoogle Scholar
  3. Bohm S, Frishman D, Mewes HW (1997) Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25:2464–2469. doi: 10.1093/nar/25.12.2464 PubMedCrossRefGoogle Scholar
  4. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. doi: 10.1186/1471-2229-4-10 PubMedCrossRefGoogle Scholar
  5. Caspers GJ, Leunissen JAM, De Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol 40:38–48. doi: 10.1007/BF00163229 CrossRefGoogle Scholar
  6. Chen XJ, Ye CJ, Lu HY (2006) Cloning of GmHSFA1 gene and its overexpression leading to en-hancement of heat tolerance in transgenic soybean. Acta Genet Sin 28:1411–1420Google Scholar
  7. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677. doi: 10.1104/pp.002857 PubMedCrossRefGoogle Scholar
  8. Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 25:479–492. doi: 10.1007/BF00043876 PubMedCrossRefGoogle Scholar
  9. Cooke HJ (2004) Silence of the centromeres–not. Trends Biotechnol 22:319–321. doi: 10.1016/j.tibtech.2004.04.015 PubMedCrossRefGoogle Scholar
  10. de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the a-crystallin-small heat-stress superfamily. Int J Biol Macromol 22:151–162. doi: 10.1016/S0141-8130(98)00013-0 PubMedCrossRefGoogle Scholar
  11. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172. doi: 10.1104/pp.127.1.159 PubMedCrossRefGoogle Scholar
  12. Edelman L, Czarnecka E, Key JL (1988) Induction and accumulation of heat shock-specific poly (A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol 86:1048–1056. doi: 10.1104/pp.86.4.1048 PubMedCrossRefGoogle Scholar
  13. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. doi: 10.1146/annurev.physiol.61.1.243 PubMedCrossRefGoogle Scholar
  14. Guan J-C et al (2004) Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56:795–809. doi: 10.1007/s11103-004-5182-z PubMedCrossRefGoogle Scholar
  15. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161. doi: 10.1093/protein/4.2.155 PubMedCrossRefGoogle Scholar
  16. Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20:3643–3646. doi: 10.1093/bioinformatics/bth397 PubMedCrossRefGoogle Scholar
  17. Harrington HM, Alm DM (1988) Interaction of heat and salt shock in cultured tobacco cells. Plant Physiol 88:618–625. doi: 10.1104/pp.88.3.618 PubMedCrossRefGoogle Scholar
  18. Helm KW, Schmeits J, Vierling E (1995) An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107:287–288. doi: 10.1104/pp.107.1.287 PubMedCrossRefGoogle Scholar
  19. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res 27:297–300. doi: 10.1093/nar/27.1.297 PubMedCrossRefGoogle Scholar
  20. Hsieh MS, Chen JT, Jinn TL, Chen YM, Lin CY (1991) A class of soybean low molecular weight heat shock proteins: immunological study and quantitation. Plant Physiol 99:1279–1284. doi: 10.1104/pp.99.4.1279 CrossRefGoogle Scholar
  21. Huang Y, Li LH, Chen Y, Li XH, Xu CG, Wang SP, Zhang QF (2006) Comparative analysis of gene expression at early seedling stage between a rice hybrid and its parents using a cDNA microarray of 9198 uni-sequences. Sci China Ser C 49:519–529. doi: 10.1007/s11427-006-2031-0 CrossRefGoogle Scholar
  22. Jain M, Khurana P, Tyagi AK, Khurana JP (2008) Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 8:69–78. doi: 10.1007/s10142-007-0052-9 PubMedCrossRefGoogle Scholar
  23. Jofré A, Molinas M, Pla M (2003) A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217:813–819. doi: 10.1007/s00425-003-1048-x PubMedCrossRefGoogle Scholar
  24. Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599. doi: 10.1038/29106 PubMedCrossRefGoogle Scholar
  25. Kimberly SE, Lara DH (2007) Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene 403:60–69. doi: 10.1016/j.gene.2007.08.003 CrossRefGoogle Scholar
  26. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Cloning of cDNAs for genes that are early responsive to dehydration stress in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol 25:791–798. doi: 10.1007/BF00028874 PubMedCrossRefGoogle Scholar
  27. Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112. doi: 10.1111/j.1365-313X.2004.02111.x PubMedCrossRefGoogle Scholar
  28. Kuo HF, Tsai YF, Young LS, Lin CY (2000) Ethanol treatment triggers a heat shock-like response but nothermotolerance in soybean (Glycine max cv. KaohsiungNo.8) seedlings. Plant Cell Environ 23:1099–1108. doi: 10.1046/j.1365-3040.2000.00621.x CrossRefGoogle Scholar
  29. LaFayette PR, Nagao RT, O’Grady K, Vierling E (1996) Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol Biol 30:159–169. doi: 10.1007/BF00017810 PubMedCrossRefGoogle Scholar
  30. Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15. doi: 10.1083/jcb.109.1.7 PubMedCrossRefGoogle Scholar
  31. Lee YRJ, Nagao RT, Lin CY, Key JL (1996) Induction and regulation of heat-shock gene expression by an amino acid analog in soybean seedlings. Plant Physiol 110:241–248PubMedGoogle Scholar
  32. Lenne C, Block MA, Garin J, Douce R (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311:805–813PubMedGoogle Scholar
  33. Lin CY, Roberts JK, Key JL (1984) Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol 74:152–160. doi: 10.1104/pp.74.1.152 PubMedCrossRefGoogle Scholar
  34. Lindquist S, Craig E (1988) The heat shock proteins. Annu Rev Genet 22:631–677. doi: 10.1146/annurev.ge.22.120188.003215 PubMedCrossRefGoogle Scholar
  35. Lubaretz O, zur Nieden U (2002) Accumulation of plant small heat-stress proteins in storage organs. Planta 215:220–228. doi: 10.1007/s00425-002-0745-1 PubMedCrossRefGoogle Scholar
  36. Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60. doi: 10.1104/pp.105.073841 PubMedCrossRefGoogle Scholar
  37. MacRae TH (2000) Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913. doi: 10.1007/PL00000733 PubMedCrossRefGoogle Scholar
  38. Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681. doi: 10.1023/A:1014826730024 PubMedCrossRefGoogle Scholar
  39. Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot (Lond) 98:279–288. doi: 10.1093/aob/mcl107 CrossRefGoogle Scholar
  40. Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687. doi: 10.1073/pnas.2535513100 PubMedCrossRefGoogle Scholar
  41. Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145. doi: 10.1038/ng1289 PubMedCrossRefGoogle Scholar
  42. Nayidu NK, Wang L, Xie WB, Zhang CJ, Fan CZ, Lian XM, Zhang QF, Xiong LZ (2008) Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene 412:59–70. doi: 10.1016/j.gene.2008.01.006 PubMedCrossRefGoogle Scholar
  43. Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189. doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2 PubMedCrossRefGoogle Scholar
  44. Nuruzzaman M, Gupta M, Zhang CJ, Wang L, Xie WB, Xiong LZ, Zhang QF, Lian XM (2008) Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol Genet Genomics 280:139–151. doi: 10.1007/s00438-008-0351-4 PubMedCrossRefGoogle Scholar
  45. Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7:203–206PubMedGoogle Scholar
  46. Sabehat A, Weiss D, Lurie S (1996) The correlation between heat shock protein accumulation and persistence and chilling tolerance in tomato fruits. Plant Physiol 110:531–537. doi: 10.1104/pp.110.2.531 PubMedCrossRefGoogle Scholar
  47. Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures. Plant Physiol 117:651–658. doi: 10.1104/pp.117.2.651 PubMedCrossRefGoogle Scholar
  48. Sachin K, Elizabeth V, Helmut B, von Pascal KD (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195. doi: 10.1105/tpc.106.048165 CrossRefGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  50. Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334. doi: 10.1007/s00299-007-0470-0 PubMedCrossRefGoogle Scholar
  51. Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M (2001) Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J Exp Bot 52:145–151. doi: 10.1093/jexbot/52.354.145 PubMedCrossRefGoogle Scholar
  52. Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237. doi: 10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2 PubMedCrossRefGoogle Scholar
  53. Schöffl F, Key JL (1982) An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J Mol Appl Genet 1:301–314PubMedGoogle Scholar
  54. Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of as subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772. doi: 10.1007/s11103-005-5750-x PubMedCrossRefGoogle Scholar
  55. Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197. doi: 10.1007/s12192-008-0032-6 PubMedCrossRefGoogle Scholar
  56. Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrapping the [alpha]-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79. doi: 10.1016/j.jmb.2005.08.025 PubMedCrossRefGoogle Scholar
  57. Sung DY, Kaplan F, Lee K-J, Guy GL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187. doi: 10.1016/S1360-1385(03)00047-5 PubMedCrossRefGoogle Scholar
  58. Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125. doi: 10.1186/1471-2164-8-125 PubMedCrossRefGoogle Scholar
  59. Takemoto L, Emmons T, Horwitz J (1993) The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem J 294:435–438PubMedGoogle Scholar
  60. Tseng TS, Tzeng SS, Yeh KW, Yeh CH, Chang FC, Chen YM, Lin CY (1993) The heat-shock response in rice seedlings: isolation and expression of cDNAs that encode class I low-molecular-weight heat-shock proteins. Plant Cell Physiol 34:165–168Google Scholar
  61. Tsvetkova NM, Horvath I, Torok Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vigh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci USA 2002:13504–13509. doi: 10.1073/pnas.192468399 CrossRefGoogle Scholar
  62. van Berkel J, Salamini F, Gebhardt C (1994) Transcripts accumu lating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol 104:445–452. doi: 10.1104/pp.104.2.445 PubMedCrossRefGoogle Scholar
  63. van Montfort RLM, Slingsby C, Vierling E (2001a) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156. doi: 10.1016/S0065-3233(01)59004-X PubMedCrossRefGoogle Scholar
  64. van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001b) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030. doi: 10.1038/nsb722 PubMedCrossRefGoogle Scholar
  65. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620. doi: 10.1146/annurev.pp.42.060191.003051 CrossRefGoogle Scholar
  66. Waters ER, Lee GJ, Vierling E (1996) Evolution structure and function of the small heat shock protein in plants. J Exp Bot 47:325–338. doi: 10.1093/jxb/47.3.325 CrossRefGoogle Scholar
  67. Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests general protective role in desiccation tolerance. Plant Physiol 122:1099–1108. doi: 10.1104/pp.122.4.1099 PubMedCrossRefGoogle Scholar
  68. Wollgiehn R, Neumann D (1995) Stress response of tomato cell cultures to toxic metals and heat shock: differences and similarities. J Plant Physiol 146:736–742Google Scholar
  69. Yeh CH, Chang PFL, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94:10967–10972. doi: 10.1073/pnas.94.20.10967 PubMedCrossRefGoogle Scholar
  70. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3(2):e38. doi: 10.1371/journal.pbio.0030038 PubMedCrossRefGoogle Scholar
  71. Zhang QF (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci USA 104:16402–16409. doi: 10.1073/pnas.0708013104 PubMedCrossRefGoogle Scholar
  72. Zhang QF, Li JY, Xue YB, Han B, Deng XW (2008) Rice 2020: a call for an international coordinated effort in rice functional genomics. Mol Plant 2008:1–5Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yidan Ouyang
    • 1
  • Jiongjiong Chen
    • 1
  • Weibo Xie
    • 1
  • Lei Wang
    • 1
  • Qifa Zhang
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina

Personalised recommendations