Plant Molecular Biology

, Volume 70, Issue 3, pp 297–309 | Cite as

Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis

Article

Abstract

Aux/IAA and auxin response factor (ARF) are two important families that have been well recognized for their roles in auxin-mediated responses. Aux/IAA proteins are short-lived transcriptional regulators that mediate the auxin responses through interaction with ARF transcription factors. Although quite a few members of the Aux/IAA family have been functionally characterized in dicotyledonous plants such as Arabidopsis, but relatively limited information is available in important crops such as rice. This work focused on isolation and characterization of a member of Aux/IAA family in rice named OsIAA1. The results indicated that OsIAA1 was constitutively expressed in all the tissues and organs investigated. The expression of this gene was induced by various phytohormones including IAA, 2,4-D, kinetin, 24-epibrassinolide, and jasmonic acid. Over-expression of OsIAA1 in rice resulted in reduced inhibition of root elongation to auxin treatment, but increased sensitivity to 24-epiBL treatment. In addition, the OsIAA1-overexpression transgenic plants showed distinctive morphological changes such as decreased plant height and loose plant architecture. Protein interaction analysis suggested that OsIAA1 may act through interaction with OsARF1. T-DNA insertion mutant of OsARF1 showed reduced sensitivity to BR treatment, resembling the phenotype of OsIAA1-overexpression plants. In addition, expression patterns of some genes responsive to brassinosteroid and auxin were changed in the OsIAA1-overexpression plants. These data suggested that OsIAA1 may play important roles in the cross-talk of auxin and brassinosteroid signaling pathways and plant morphogenesis.

Keywords

Phytohormone ARF Aux/IAA Transgenic rice 

Abbreviations

ABA

Abscisic acid

ARF

Auxin response factor

BR

Brassinosteroid

GA

Gibberellin acid

IAA

Indole-3-acetic acid

JA

Jasmonic acid

KT

Kinetin

24-epiBL

24-epibrassinolide

2,4-D

2,4-dichlorophen oxyacetic acid

Notes

Acknowledgements

This work was supported by the grants from the National Program on the Development of Basic Research, the National Program on High Technology Development, the National Natural Science Foundation, and the Ministry of Education of China.

Supplementary material

11103_2009_9474_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)

References

  1. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17. doi: 10.1104/pp.111.1.9 PubMedCrossRefGoogle Scholar
  2. Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330. doi: 10.1073/pnas.91.1.326 PubMedCrossRefGoogle Scholar
  3. Colon-Carmona A, Chen DL, Yeh KC, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124:1728–1738. doi: 10.1104/pp.124.4.1728 PubMedCrossRefGoogle Scholar
  4. Dharmasiri N, Dharmasiri S, Jones AM, Estelle M (2003) Auxin action in a cell-free system. Curr Biol 13:1418–1422. doi: 10.1016/S0960-9822(03)00536-0 PubMedCrossRefGoogle Scholar
  5. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12. doi: 10.1016/S1369526602000031 PubMedCrossRefGoogle Scholar
  6. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168. doi: 10.1046/j.0960-7412.2001.01201.x PubMedCrossRefGoogle Scholar
  7. Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334. doi: 10.1104/pp.011254 PubMedCrossRefGoogle Scholar
  8. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573. doi: 10.1104/pp.103.034736 PubMedCrossRefGoogle Scholar
  9. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385. doi: 10.1023/A:1015207114117 PubMedCrossRefGoogle Scholar
  10. Halliday KJ (2004) Plant hormones: the interplay of brassinosteroids and auxin. Curr Biol 14:R1008–R1010. doi: 10.1016/j.cub.2004.11.025 PubMedCrossRefGoogle Scholar
  11. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615. doi: 10.1101/gad.229402 PubMedCrossRefGoogle Scholar
  12. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100. doi: 10.1242/dev.00925 PubMedCrossRefGoogle Scholar
  13. Hardtke CS, Dorcey E, Osmont KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions. Trends Cell Biol 17:485–492. doi: 10.1016/j.tcb.2007.08.003 PubMedCrossRefGoogle Scholar
  14. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi: 10.1046/j.1365-313X.1994.6020271.x PubMedCrossRefGoogle Scholar
  15. Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59. doi: 10.1007/s10142-005-0005-0 PubMedCrossRefGoogle Scholar
  16. Kepinski S, Leyser O (2004) Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci USA 101:12381–12386. doi: 10.1073/pnas.0402868101 PubMedCrossRefGoogle Scholar
  17. Kim BC, Soh MC, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J 9:441–456. doi: 10.1046/j.1365-313X.1996.09040441.x PubMedCrossRefGoogle Scholar
  18. Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791. doi: 10.1073/pnas.94.22.11786 PubMedCrossRefGoogle Scholar
  19. Kloosterman B, Visser RG, Bachem CW (2006) Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member (StIAA2) that is involved in petiole hyponasty and shoot morphogenesis. Plant Physiol Biochem 44:766–775. doi: 10.1016/j.plaphy.2006.10.026 PubMedCrossRefGoogle Scholar
  20. Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413. doi: 10.1046/j.1365-313x.1996.10030403.x PubMedCrossRefGoogle Scholar
  21. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400. doi: 10.1023/A:1015255030047 PubMedCrossRefGoogle Scholar
  22. Maeda E (1965) Rate of lamina inclination in excised rice leaves. Physiol Plant 18:813–827. doi: 10.1111/j.1399-3054.1965.tb06940.x CrossRefGoogle Scholar
  23. Mandava BN (1998) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52. doi: 10.1146/annurev.pp.39.060188.000323 CrossRefGoogle Scholar
  24. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574. doi: 10.1104/pp.123.2.563 PubMedCrossRefGoogle Scholar
  25. Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853. doi: 10.1104/pp.103.030031 PubMedCrossRefGoogle Scholar
  26. Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S (2006a) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205. doi: 10.1111/j.1365-313X.2005.02582.x PubMedCrossRefGoogle Scholar
  27. Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M (2006b) Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J 46:297–306. doi: 10.1111/j.1365-313X.2006.02693.x PubMedCrossRefGoogle Scholar
  28. Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:E258. doi: 10.1371/journal.pbio.0020258
  29. Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841PubMedCrossRefGoogle Scholar
  30. Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300. doi: 10.1105/tpc.105.036723 PubMedCrossRefGoogle Scholar
  31. Park JY, Kim HJ, Kim J (2002) Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant J 32:669–683. doi: 10.1046/j.1365-313X.2002.01459.x PubMedCrossRefGoogle Scholar
  32. Phillips SE (1994) The beta-ribbon DNA recognition motif. Annu Rev Biophys Biomol Struct 23:671–701. doi: 10.1146/annurev.bb.23.060194.003323 PubMedCrossRefGoogle Scholar
  33. Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425. doi: 10.1016/S1360-1385(01)02042-8 PubMedCrossRefGoogle Scholar
  34. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752. doi: 10.1104/pp.104.039669 PubMedCrossRefGoogle Scholar
  35. Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480PubMedCrossRefGoogle Scholar
  36. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373. doi: 10.1126/science.279.5355.1371 PubMedCrossRefGoogle Scholar
  37. Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591. doi: 10.1007/s00425-008-0853-7 PubMedCrossRefGoogle Scholar
  38. Takeda K (1997) Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp 16:1–18Google Scholar
  39. Takeno K, Pharis RP (1982) Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: An auxin-mediated phenomenon. Plant Cell Physiol 23:1275–1281Google Scholar
  40. Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393. doi: 10.1105/tpc.018630 PubMedCrossRefGoogle Scholar
  41. Thakur JK, Tyagi AK, Khurana JP (2001) OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light. DNA Res 8:193–203. doi: 10.1093/dnares/8.5.193 PubMedCrossRefGoogle Scholar
  42. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721PubMedGoogle Scholar
  43. Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319. doi: 10.1105/tpc.010283 PubMedCrossRefGoogle Scholar
  44. Timpte C, Wilson AK, Estelle M (1994) The axr2–1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249PubMedGoogle Scholar
  45. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822PubMedCrossRefGoogle Scholar
  46. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543. doi: 10.1105/tpc.008417 PubMedCrossRefGoogle Scholar
  47. Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543. doi: 10.1105/tpc.017384 PubMedCrossRefGoogle Scholar
  48. Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868. doi: 10.1126/science.276.5320.1865 PubMedCrossRefGoogle Scholar
  49. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedCrossRefGoogle Scholar
  50. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849. doi: 10.1073/pnas.96.10.5844 PubMedCrossRefGoogle Scholar
  51. Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA 105:9829–9834. doi: 10.1073/pnas.0803996105 PubMedCrossRefGoogle Scholar
  52. Waller F, Furuya M, Nick P (2002) OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol 50:415–425. doi: 10.1023/A:1019818110761 PubMedCrossRefGoogle Scholar
  53. Wanda K, Kondo H, Marumo S (1985) A simple bioassay for brassinosteroids: A wheat leaf-unrolling test. Agric Biol Chem 49:2249–2251Google Scholar
  54. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692. doi: 10.1105/tpc.105.033415 PubMedCrossRefGoogle Scholar
  55. Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24. doi: 10.1016/j.gene.2007.01.006 PubMedCrossRefGoogle Scholar
  56. Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K (2008) OsLIC, a novel CCCH-Type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 3:e3521. doi: 10.1371/journal.pone.0003521
  57. Weijers D, Jurgens G (2004) Funneling auxin action: specificity in signal transduction. Curr Opin Plant Biol 7:687–693. doi: 10.1016/j.pbi.2004.09.006 PubMedCrossRefGoogle Scholar
  58. Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383. doi: 10.1007/BF00633843 PubMedCrossRefGoogle Scholar
  59. Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21:553–562. doi: 10.1046/j.1365-313x.2000.00703.x PubMedCrossRefGoogle Scholar
  60. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606PubMedCrossRefGoogle Scholar
  61. Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J 40:772–782. doi: 10.1111/j.1365-313X.2004.02254.x PubMedCrossRefGoogle Scholar
  62. Zurek DM, Clouse SD (1994) Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol 104:161–170. doi: 10.1104/pp.104.1.161 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina

Personalised recommendations