Plant Molecular Biology

, Volume 70, Issue 3, pp 273–281 | Cite as

A novel extended family of stromal thioredoxins

  • Peter Cain
  • Michael Hall
  • Wolfgang P. Schröder
  • Thomas Kieselbach
  • Colin RobinsonEmail author


Thioredoxins play key regulatory roles in chloroplasts by linking photosynthetic light reactions to a series of plastid functions. In addition to the established groups of thioredoxins, f, m, x, and y, novel plant thioredoxins were also considered to include WCRKC motif proteins, CDSP32, the APR proteins, the lilium proteins and HCF164. Despite their important roles, the subcellular locations of many novel thioredoxins has remained unknown. Here, we report a study of their subcellular location using the cDNA clone resources of TAIR. In addition to filling all gaps in the subcellular map of the established chloroplast thioredoxins f, m, x and y, we show that the members of the WCRKC family are targeted to the stroma and provide evidence for a stromal location of the lilium proteins. The combined data from this and related studies indicate a consistent stromal location of the known Arabidopsis chloroplast thioredoxins except for thylakoid-bound HCF164.


Arabidopsis thaliana Chloroplast Protein targeting Subcellular location Thioredoxin 



This study was supported by grants from the J. C. Kempe Memorial Fund Foundation (M. H.), the Carl-Trygger Foundation (T. K.) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS, to W. P. S).


  1. Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375. doi: 10.1073/pnas.232703799 PubMedCrossRefGoogle Scholar
  2. Balmer Y, Vensel WH, Hurkman WJ, Buchanan BB (2006) Thioredoxin target proteins in chloroplast thylakoid membranes. Antioxid Redox Signal 8:1829–1834. doi: 10.1089/ars.2006.8.1829 PubMedCrossRefGoogle Scholar
  3. Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci USA 105:4933–4938. doi: 10.1073/pnas.0800378105 PubMedCrossRefGoogle Scholar
  4. Brock IW, Hazell L, Michl D, Nielsen VS, Moller BL, Herrmann RG, Klosgen RB, Robinson C (1993) Precursors of one integral and five lumenal thylakoid proteins are imported by isolated pea and barley thylakoids: optimisation of in vitro assays. Plant Mol Biol 23:717–725. doi: 10.1007/BF00021527 PubMedCrossRefGoogle Scholar
  5. Broin M, Rey P (2003) Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid Peroxidation in thylakoids under photooxidative stress. Plant Physiol 132:1335–1343. doi: 10.1104/pp.103.021626 PubMedCrossRefGoogle Scholar
  6. Broin M, Cuine S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248. doi: 10.1016/S0014-5793(00)01165-0 PubMedCrossRefGoogle Scholar
  7. Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol Plant Mol Biol 31:341–374Google Scholar
  8. Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220. doi: 10.1146/annurev.arplant.56.032604.144246 PubMedCrossRefGoogle Scholar
  9. Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752. doi: 10.1074/jbc.M302077200 PubMedCrossRefGoogle Scholar
  10. Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E (2004) Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol 136:4088–4095. doi: 10.1104/pp.104.052233 PubMedCrossRefGoogle Scholar
  11. Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A (2008) A small family of chloroplast atypical thioredoxins. Plant Physiol. doi: 10.1104/pp.108.128314
  12. Dietz KJ (2008) Redox signal integration: from stimulus to networks and genes. Physiol Plant 133:459–468. doi: 10.1111/j.1399-3054.2008.01120.x PubMedCrossRefGoogle Scholar
  13. Eymery F, Rey P (1999) Immunocytolocalization of CDSP 32 and CDSP 34, two chloroplastic drought-induced stress proteins in Solanum tuberosum plants. Plant Physiol Biochem 37:305–312. doi: 10.1016/S0981-9428(99)80029-1 CrossRefGoogle Scholar
  14. Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499. doi: 10.1105/tpc.017814 PubMedCrossRefGoogle Scholar
  15. Gopalan G, He Z, Balmer Y, Romano P, Gupta R, Heroux A, Buchanan BB, Swaminathan K, Luan S (2004) Structural analysis uncovers a role for redox in regulating FKBP13, an immunophilin of the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101:13945–13950. doi: 10.1073/pnas.0405240101 PubMedCrossRefGoogle Scholar
  16. Hall M, Schröder WP, Kieselbach T (2008) Thioredoxin interactions of the chloroplast lumen of Arabidopsis thaliana indicate a redox regulation of the xanthophyll cycle. In: Allen JF, Gantt JH, Osmond B (eds) Photosynthesis. Energy from the sun—14th international congress on photosynthesis, Springer, Netherlands, pp 1099–1102. doi: 10.1007/978-1-4020-6709-9 CrossRefGoogle Scholar
  17. Hesse H, Trachsel N, Suter M, Kopriva S, von Ballmoos P, Rennenberg H, Brunold C (2003) Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots. J Exp Bot 54:1701–1709. doi: 10.1093/jxb/erg177 PubMedCrossRefGoogle Scholar
  18. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966PubMedGoogle Scholar
  19. Issakidis-Bourguet E, Mouaheb N, Meyer Y, Miginiac-Maslow M (2001) Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. Plant J 25:127–135. doi: 10.1046/j.0960-7412.2000.00943.x PubMedCrossRefGoogle Scholar
  20. James HE, Bartling D, Musgrove JE, Kirwin PM, Herrmann RG, Robinson C (1989) Transport of proteins into chloroplasts. Import and maturation of precursors to the 33-, 23-, and 16-kDa proteins of the photosynthetic oxygen-evolving complex. J Biol Chem 264:19573–19576PubMedGoogle Scholar
  21. Kopriva S, Muheim R, Koprivova A, Trachsel N, Catalano C, Suter M, Brunold C (1999) Light regulation of assimilatory sulphate reduction in Arabidopsis thaliana. Plant J 20:37–44. doi: 10.1046/j.1365-313X.1999.00573.x PubMedCrossRefGoogle Scholar
  22. Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543:87–92. doi: 10.1016/S0014-5793(03)00416-2 PubMedCrossRefGoogle Scholar
  23. Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51:343–365. doi: 10.1007/s00294-007-0128-z PubMedCrossRefGoogle Scholar
  24. Lennartz K, Plucken H, Seidler A, Westhoff P, Bechtold N, Meierhoff K (2001) HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b(6)f complex in Arabidopsis. Plant Cell 13:2539–2551PubMedCrossRefGoogle Scholar
  25. Lin TY, Chen TS (2004) A positive charge at position 33 of thioredoxin primarily affects its interaction with other proteins but not redox potential. Biochemistry 43:945–952. doi: 10.1021/bi0355138 PubMedCrossRefGoogle Scholar
  26. Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706. doi: 10.1002/pmic.200400805 PubMedCrossRefGoogle Scholar
  27. Marchand C, Le Marechal P, Meyer Y, Decottignies P (2006) Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin. Proteomics 6:6528–6537. doi: 10.1002/pmic.200600443 PubMedCrossRefGoogle Scholar
  28. Mata-Cabana A, Florencio FJ, Lindahl M (2007) Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin. Proteomics 7:3953–3963. doi: 10.1002/pmic.200700410 PubMedCrossRefGoogle Scholar
  29. Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347:394–402. doi: 10.1016/S0076-6879(02)47039-5 PubMedCrossRefGoogle Scholar
  30. Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433. doi: 10.1007/s11120-005-5220-y PubMedCrossRefGoogle Scholar
  31. Meyer Y, Riondet C, Constans L, Abdelgawwad MR, Reichheld JP, Vignols F (2006) Evolution of redoxin genes in the green lineage. Photosynth Res 89:179–192. doi: 10.1007/s11120-006-9095-3 PubMedCrossRefGoogle Scholar
  32. Mossner E, Huber-Wunderlich M, Glockshuber R (1998) Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases. Protein Sci 7:1233–1244PubMedCrossRefGoogle Scholar
  33. Motohashi K, Hisabori T (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 281:35039–35047. doi: 10.1074/jbc.M605938200 PubMedCrossRefGoogle Scholar
  34. Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229. doi: 10.1073/pnas.191282098 PubMedCrossRefGoogle Scholar
  35. Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Peltier G (1998) A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. Plant J 13:97–107. doi: 10.1046/j.1365-313X.1998.00015.x PubMedCrossRefGoogle Scholar
  36. Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31–42. doi: 10.1111/j.1365-313X.2004.02271.x PubMedCrossRefGoogle Scholar
  37. Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylylsulfate reductase. Proc Natl Acad Sci USA 93:13383–13388. doi: 10.1073/pnas.93.23.13383 PubMedCrossRefGoogle Scholar
  38. Singh AK, Bhattacharyya-Pakrasi M, Pakrasi HB (2008) Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J Biol Chem 283:15762–15770. doi: 10.1074/jbc.M800982200 PubMedCrossRefGoogle Scholar
  39. Viitanen PV, Doran ER, Dunsmuir P (1988) What is the role of the transit peptide in thylakoid integration of the light-harvesting chlorophyll a/b protein? J Biol Chem 263:15000–15007PubMedGoogle Scholar
  40. Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846. doi: 10.1126/science.1088305 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Peter Cain
    • 1
  • Michael Hall
    • 2
  • Wolfgang P. Schröder
    • 2
  • Thomas Kieselbach
    • 2
  • Colin Robinson
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK
  2. 2.Department of Chemistry and Umeå Plant Science Centre (UPSC)Umeå UniversityUmeåSweden

Personalised recommendations