Advertisement

Plant Molecular Biology

, Volume 70, Issue 3, pp 231–240 | Cite as

Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress

  • Bo Hong
  • Chao Ma
  • Yingjie Yang
  • Ting Wang
  • Kazuko Yamaguchi-Shinozaki
  • Junping Gao
Article

Abstract

The effect of over-expression of AtDREB1A gene in chrysanthemums on heat stress tolerance was investigated. Transgenic plants with 35S:AtDREB1A construct (henceforth, 35S plants) and wild type (WT) plants were exposed to 45°C as a heat stress treatment. When heat-treated for 36 h and followed by a 3-week recovery, approximately 70% of the 35S plants, but less than 20% of the WT plants were survived. Leaf electrolyte leakage was significantly lower in 35S plants than in WT plants. cDNA macroarray analysis showed that 55 of 74 DREB1A regulon members were up-regulated under heat stress in WT plants. In comparison with WT plants, 35S plants displayed greatly enhanced expression of the genes including signal transduction, transcription and HSP70 in the early time, and the genes including photosynthesis and metabolism in the late time of the heat treatment. We also found that the 35S plants maintained significantly higher photosynthetic capacity, and elevated activity of Rubisco and sucrose-phosphate synthase under heat stress. These results suggest that improvement of heat stress tolerance in transgenic chrysanthemum may be associated with enhanced tolerance of photosynthesis.

Keywords

AtDREB1A Chrysanthemum DREB1A regulon Heat tolerance Photosynthesis 

Notes

Acknowledgments

The authors would like to thank Dr. Cai-Zhong Jiang (Crops Pathology and Genetics Research Unit, USDA-ARS, USA) for critical review of this manuscript. This work was supported by the Program of State Forest Administration (2006-4-74) and National Post-doctoral Science Foundation (No. 20060390096).

Supplementary material

11103_2009_9468_MOESM1_ESM.doc (262 kb)
DOC 262 kb

References

  1. Benedict C, Skinner JS, Meng R, Chang YJ, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272. doi: 10.1111/j.1365-3040.2006.01505.x PubMedCrossRefGoogle Scholar
  2. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi: 10.1146/annurev.pp.31.060180.002423 CrossRefGoogle Scholar
  3. Ding XZ, Tsokos GC, Kiang JG (1998) Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity. FASEB J 12:451–459PubMedGoogle Scholar
  4. Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546. doi: 10.1104/pp.116.2.539 PubMedCrossRefGoogle Scholar
  5. Galtier N, Foyer CH, Huber JLA, Voelker TA, Huber SC (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var. UC82B). Plant Physiol 101:535–548PubMedGoogle Scholar
  6. Galtier N, Foyer CH, Murchie E, Aldred R, Quick WP, Voelker TA, Thepenier C, Lasceve G, Betsche T (1995) Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose-phosphate synthase. J Exp Bot 46:1335–1344Google Scholar
  7. Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169–1183. doi: 10.1111/j.1365-3040.2004.01222.x CrossRefGoogle Scholar
  8. Hong B, Tong Z, Li QH, Ma C, Kasuga M, Yamaguchi-Shinozaki K, Gao JP (2006a) Regeneration and transformation through somatic embryogenesis, and determination of cold stress tolerance in ground cover Chrysanthemum cv. Fall color. Sci Agric Sin 39(7):1443–1450Google Scholar
  9. Hong B, Tong Z, Ma N, Kasuga M, Yamaguchi-Shinozaki K, Gao JP (2006b) Expression of Arabidopsis DREB1A gene in transgenic chrysanthemum enhances tolerance to low temperature. J Hortic Sci Biot 81:1002–1008Google Scholar
  10. Hong B, Tong Z, Ma N, Li JK, Kasuga M, Yamaguchi-Shinozaki K, Gao JP (2006c) Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China 49:436–445CrossRefGoogle Scholar
  11. Huber SC, Huber JL (1992) Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol 99:1275–1278. doi: 10.1104/pp.99.4.1275 PubMedCrossRefGoogle Scholar
  12. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant Cell Physiol 47:141–153. doi: 10.1093/pcp/pci230 PubMedCrossRefGoogle Scholar
  13. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106. doi: 10.1126/science.280.5360.104 PubMedCrossRefGoogle Scholar
  14. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350. doi: 10.1093/pcp/pch037 PubMedCrossRefGoogle Scholar
  15. Lafta AM, Lorenzen JH (1995) Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol 109:637–643PubMedGoogle Scholar
  16. Lim CJ, Yang KA, Hong YJ, Choi JS, Yun DJ, Hong JC, Chung WS, Lee SY, Cho MJ, Lim CO (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119:373–383. doi: 10.1007/s10265-006-0285-z PubMedCrossRefGoogle Scholar
  17. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedCrossRefGoogle Scholar
  18. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993. doi: 10.1111/j.1365-313X.2004.02100.x PubMedCrossRefGoogle Scholar
  19. Micallef BJ, Haskin KA, Vanderveer PJ, Roth K-S, Shewmaker CK, Sharkey TD (1995) Altered photosynthesis, flowering and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196:327–334. doi: 10.1007/BF00201392 CrossRefGoogle Scholar
  20. Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71. doi: 10.1111/j.1399-3054.2005.00592.x CrossRefGoogle Scholar
  21. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim MJ, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. Plant Physiol 138:341–351. doi: 10.1104/pp.104.059147 PubMedCrossRefGoogle Scholar
  22. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500. doi: 10.1139/g03-140 PubMedCrossRefGoogle Scholar
  23. Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406. doi: 10.1111/j.1365-3040.2008.01776.x PubMedCrossRefGoogle Scholar
  24. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69. doi: 10.1111/j.1365-313X.2007.03034.x PubMedCrossRefGoogle Scholar
  25. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1–14. doi: 10.1104/pp.103.033431 CrossRefGoogle Scholar
  26. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827. doi: 10.1073/pnas.0605639103 Google Scholar
  27. Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470. doi: 10.1104/pp.103.038323 PubMedCrossRefGoogle Scholar
  28. Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539. doi: 10.1093/pcp/pci165 PubMedCrossRefGoogle Scholar
  29. Sharkey TD, Vassey TL, Vanderveer PJ, Vierstra RD (1991) Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabacum L.) having excess phytochrome. Planta 185:287–296. doi: 10.1007/BF00201046 CrossRefGoogle Scholar
  30. Signora L, Galtier N, Skét L, Lucas H, Foyer CH (1998) Overexpression of sucrose-phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. J Exp Bot 49:669–680. doi: 10.1093/jexbot/49.321.669 CrossRefGoogle Scholar
  31. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040. doi: 10.1073/pnas.94.3.1035
  32. Van Buskirk HA, Thomashow FM (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plant 126:72–80. doi: 10.1111/j.1399-3054.2006.00625.x CrossRefGoogle Scholar
  33. Vassey TL, Sharkey TD (1989) Mild water stress of Phaseolus vulguris plants leads to reduced starch synthesis and extractible sucrose-phosphate synthase activity. Plant Physiol 89:1066–1070. doi: 10.1104/pp.89.4.1066 PubMedCrossRefGoogle Scholar
  34. Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi: 10.1016/j.tplants.2004.03.006 PubMedCrossRefGoogle Scholar
  35. Worrell AC, Bruneau J, Summerfelt K, Boersig M, Voelker TA (1991) Expression of a maize sucrose-phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 3:1121–1130PubMedCrossRefGoogle Scholar
  36. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264PubMedCrossRefGoogle Scholar
  37. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Bo Hong
    • 1
  • Chao Ma
    • 2
  • Yingjie Yang
    • 2
  • Ting Wang
    • 2
  • Kazuko Yamaguchi-Shinozaki
    • 3
  • Junping Gao
    • 2
  1. 1.College of Landscape and ArchitectureNortheast Forestry UniversityHarbinChina
  2. 2.Department of Ornamental HorticultureChina Agricultural UniversityBeijingChina
  3. 3.Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan

Personalised recommendations