Plant Molecular Biology

, Volume 69, Issue 4, pp 489–502 | Cite as

Hormonal interactions during root tropic growth: hydrotropism versus gravitropism

  • Hideyuki Takahashi
  • Yutaka Miyazawa
  • Nobuharu Fujii


Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny–Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.


Arabidopsis thaliana Auxin Cucumis sativus Gravitropism Hydrotropism MIZ1 Pisum sativum 



The authors thank Prof. TJ Guilfoyle of the University of Missouri for kindly providing us with DR5::uidA transgenic Arabidopsis. The authors gratefully acknowledge support through Grants-in-Aid for Scientific Research (B: No. 20370017, C: No. 19570031) from JSPS, Japan, Grants-in-Aid for Scientific Research on Priority Areas (No. 19039005) from MEXT, Japan, and the Global COE Program J03 (ecosystem management adapting to global change) of the MEXT. The authors dedicate this paper to Dr. Mordecai Jacob Jaffe who died on October 15, 2007.


  1. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950. doi: 10.1126/science.273.5277.948 PubMedGoogle Scholar
  2. Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147. doi: 10.1105/tpc.106.040782 PubMedGoogle Scholar
  3. Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690. doi: 10.1104/pp.103.032169 PubMedGoogle Scholar
  4. Blancaflor EB, Fasano J, Gilroy S (1998) Mapping the functional role of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222. doi: 10.1104/pp.116.1.213 PubMedGoogle Scholar
  5. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi: 10.1038/nature03184 PubMedGoogle Scholar
  6. Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625. doi: 10.1105/tpc.015560 PubMedGoogle Scholar
  7. Cassab GI (2008) Other tropisms and their relationship to gravitropism. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 123–1139Google Scholar
  8. Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117. doi: 10.1073/pnas.95.25.15112 PubMedGoogle Scholar
  9. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45. doi: 10.1146/annurev.arplant.58.032806.103951 PubMedGoogle Scholar
  10. Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701. doi: 10.1126/science.282.5394.1698 PubMedGoogle Scholar
  11. Cole ES, Mahall BE (2006) A test for hydrotropic behavior by roots of two costal dune shrubs. New Phytol 172:358–368. doi: 10.1111/j.1469-8137.2006.01822.x PubMedGoogle Scholar
  12. Conner TW, Goekjian VH, LaFayette PR, Key JL (1990) Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15:623–632. doi: 10.1007/BF00017836 PubMedGoogle Scholar
  13. Darwin C, Darwin F (1880) The power of movement in plants. William Clowes and Sons, LondonGoogle Scholar
  14. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi: 10.1038/nature03543 PubMedGoogle Scholar
  15. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119. doi: 10.1016/j.devcel.2005.05.014 PubMedGoogle Scholar
  16. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TWJ, Stierhof Y-D Jr, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 105:4489–4494. doi: 10.1073/pnas.0711414105 PubMedGoogle Scholar
  17. Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546. doi: 10.1104/pp.011841 PubMedGoogle Scholar
  18. Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50. doi: 10.1016/j.tplants.2004.11.004 PubMedGoogle Scholar
  19. Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236–241. doi: 10.1073/pnas.0507127103 PubMedGoogle Scholar
  20. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12. doi: 10.1016/S1369526602000031 PubMedGoogle Scholar
  21. Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809PubMedGoogle Scholar
  22. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168. doi: 10.1046/j.0960-7412.2001.01201.x PubMedGoogle Scholar
  23. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230. doi: 10.1126/science.282.5397.2226 PubMedGoogle Scholar
  24. Gee MA, Hagen G, Guilfoyle TJ (1991) Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Plant Cell 3:419–430PubMedGoogle Scholar
  25. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230. doi: 10.1016/S0092-8674(03)00003-5 PubMedGoogle Scholar
  26. Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428. doi: 10.1038/35096571 PubMedGoogle Scholar
  27. Gilroy S, Masson PH (eds) (2008) Plant tropisms. Blackwell Publishing, Ames, Oxford, VictoriaGoogle Scholar
  28. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276. doi: 10.1038/35104500 PubMedGoogle Scholar
  29. Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133:100–112. doi: 10.1104/pp.103.023358 PubMedGoogle Scholar
  30. Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757–770PubMedGoogle Scholar
  31. Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392. doi: 10.1111/j.1365-313X.2007.03351.x PubMedGoogle Scholar
  32. Hart JW (1990) Plant tropism and growth movement. Unwin Hyman, LondonGoogle Scholar
  33. Hasenstein KH, Evans ML (1988) Effect of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894PubMedGoogle Scholar
  34. Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 6:1–11. doi: 10.1016/j.cub.2005.11.044 Google Scholar
  35. Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734. doi: 10.1016/j.cub.2008.04.039 PubMedGoogle Scholar
  36. Hirasawa T, Takahashi H, Suge H, Ishihara K (1997) Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea, Pisum sativum L. Plant Cell Environ 20:381–386. doi: 10.1046/j.1365-3040.1997.d01-70.x Google Scholar
  37. Iino M (2006) Toward understanding the ecological functions of tropisms: interactions among and effects of light on tropisms. Curr Opin Plant Biol 9:89–93. doi: 10.1016/j.pbi.2005.11.012 PubMedGoogle Scholar
  38. Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447. doi: 10.1126/science.230.4724.445 PubMedGoogle Scholar
  39. Johnsson A (1997) Circumnutations: results from recent experiments on Earth and in space. Planta 203:S147–S158. doi: 10.1007/PL00008103 PubMedGoogle Scholar
  40. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141. doi: 10.1126/science.291.5511.2138 PubMedGoogle Scholar
  41. Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150. doi: 10.1093/jxb/erl274 PubMedGoogle Scholar
  42. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi: 10.1038/nature03542 PubMedGoogle Scholar
  43. Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791. doi: 10.1073/pnas.94.22.11786 PubMedGoogle Scholar
  44. Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. CRC Crit Rev Plant Sci 19:551–573. doi: 10.1016/S0735-2689(01)80008-3 PubMedGoogle Scholar
  45. Kiss JZ, Sack FD (1989) Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris. Planta 180:123–130. doi: 10.1007/BF02411418 PubMedGoogle Scholar
  46. Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177:198–206. doi: 10.1007/BF00392808 PubMedGoogle Scholar
  47. Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417. doi: 10.1104/pp.013847 PubMedGoogle Scholar
  48. Kleine-Vehn J, Dhonukshe P, Swarup R, Benett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181. doi: 10.1105/tpc.106.042770 PubMedGoogle Scholar
  49. Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729. doi: 10.1073/pnas.0609929104 PubMedGoogle Scholar
  50. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi: 10.1038/nature03896 PubMedGoogle Scholar
  51. Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800. doi: 10.1104/pp.114.3.789 PubMedGoogle Scholar
  52. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi: 10.1093/emboj/18.7.1730 PubMedGoogle Scholar
  53. Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis Multidrug Resistance-Like ABC transporter genes. Plant Cell 19:1838–1850. doi: 10.1105/tpc.107.051599 PubMedGoogle Scholar
  54. Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–485PubMedGoogle Scholar
  55. Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, molecular biology, 2nd edn. Kluwer Academic Publishers, The Netherlands, pp 509–530Google Scholar
  56. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187. doi: 10.1101/gad.12.14.2175 PubMedGoogle Scholar
  57. Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445. doi: 10.1046/j.1365-313X.2003.01637.x PubMedGoogle Scholar
  58. McClure BA, Guilfoyle T (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science 243:91–93. doi: 10.1126/science.11540631 PubMedGoogle Scholar
  59. Migliaccio F, Piconese S (2001) Spiralizations and tropisms in Arabidopsis roots. Trends Plant Sci 6:561–565. doi: 10.1016/S1360-1385(01)02152-5 PubMedGoogle Scholar
  60. Miyamoto N, Ookawa T, Takahashi H, Hirasawa T (2002) Water uptake and hydraulic properties of elongating cells in hydrotropically bending roots of Pisum sativum L. Plant Cell Physiol 43:393–401. doi: 10.1093/pcp/pcf046 PubMedGoogle Scholar
  61. Miyazawa Y, Sakashita T, Funayama T, Hamada N, Negishi H, Kobayashi A, Kaneyasu T, Ooba A, Morohashi K, Kakizaki T, Wada S, Kobayashi Y, Fujii N, Takahashi H (2008) Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. J Radiat Res (Tokyo) 49:373–379. doi: 10.1269/jrr.07131 Google Scholar
  62. Mizuno H, Kobayashi A, Fujii N, Yamashita M, Takahashi H (2002) Hydrotropic response and expression pattern of auxin-inducible gene, CS-IAA1, in the primary roots of clinorotated cucumber seedlings. Plant Cell Physiol 43:793–801. doi: 10.1093/pcp/pcf093 PubMedGoogle Scholar
  63. Mochizuki S, Harada A, Inada S, Sugimoto-Shirasu K, Stacey N, Wada T, Ishiguro S, Okada K, Sakai T (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. Plant Cell 17:537–547. doi: 10.1105/tpc.104.028530 PubMedGoogle Scholar
  64. Monshausen GB, Swanson SJ, Gilroy S (2008) Touch sensing and thigmotropism. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 91–122Google Scholar
  65. Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718. doi: 10.1016/j.pbi.2004.09.001 PubMedGoogle Scholar
  66. Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20:226–243. doi: 10.1007/s003440010027 PubMedGoogle Scholar
  67. Muday GK, Peer WA, Murphy AS (2003) Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci 8:301–304. doi: 10.1016/S1360-1385(03)00132-8 PubMedGoogle Scholar
  68. Muday GK, Rahman A (2008) Auxin transport and the Integration of gravitropisc growth. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 47–77Google Scholar
  69. Mullen JL, Kiss JZ (2008) Phototropism and its relationship to gravitropism. In: Simon S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Ames, Oxford, Victoria, pp 79–90Google Scholar
  70. Müller A, Guan C, Gälweiler L, Tänzler P, Huijiser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911. doi: 10.1093/emboj/17.23.6903 PubMedGoogle Scholar
  71. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574. doi: 10.1104/pp.123.2.563 PubMedGoogle Scholar
  72. Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644. doi: 10.1073/pnas.0607703104 PubMedGoogle Scholar
  73. Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999–1002. doi: 10.1038/nature01716 PubMedGoogle Scholar
  74. Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454PubMedGoogle Scholar
  75. Ohwaki Y, Tsurumi S (1976) Auxin transport and growth in intact roots of Vicia faba. Plant Cell Physiol 17:1329–1342Google Scholar
  76. Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis thaliana seedlings induced by obstacle-touching stimulus. Science 250:274–276. doi: 10.1126/science.250.4978.274 PubMedGoogle Scholar
  77. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463. doi: 10.1105/tpc.104.028316 PubMedGoogle Scholar
  78. Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147. doi: 10.1104/pp.103.027847 PubMedGoogle Scholar
  79. Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991. doi: 10.1073/pnas.0437936100 PubMedGoogle Scholar
  80. Oyanagi A, Takahashi H, Suge H (1995) Interaction between hydrotropism and gravitropism in the primary seminal roots of Triticum aestivum L. Ann Bot 75:229–235Google Scholar
  81. Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406. doi: 10.1046/j.1365-313x.2001.00970.x PubMedGoogle Scholar
  82. Perrin RM, Young LS, Murthy UMN, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot (Lond) 96:737–743. doi: 10.1093/aob/mci227 Google Scholar
  83. Petrásek J, Cerná A, Schwarzerová K, Elckner M, Morris DA, Zazímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263. doi: 10.1104/pp.012740 PubMedGoogle Scholar
  84. Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918. doi: 10.1126/science.1123542 PubMedGoogle Scholar
  85. Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water dificit in root tropisms. Plant Cell Environ 31:205–217PubMedGoogle Scholar
  86. Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683–1697PubMedGoogle Scholar
  87. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373. doi: 10.1126/science.279.5355.1371 PubMedGoogle Scholar
  88. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472. doi: 10.1016/S0092-8674(00)81535-4 PubMedGoogle Scholar
  89. Sedbrook JC, Chen R, Masson PH (1999) ARG1 (Altered Response to Gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci USA 96:1140–1145. doi: 10.1073/pnas.96.3.1140 PubMedGoogle Scholar
  90. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268. doi: 10.1038/368265a0 PubMedGoogle Scholar
  91. Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188. doi: 10.1104/pp.107.109413 PubMedGoogle Scholar
  92. Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065. doi: 10.1038/ncb1316 PubMedGoogle Scholar
  93. Takahashi H (1997) Hydrotropism: the current state of our knowledge. J Plant Res 1110:163–169. doi: 10.1007/BF02509304 Google Scholar
  94. Takahashi H, Scott TK (1991) Hydrotropism and its interaction with gravitropism in maize roots. Plant Physiol 96:558–564PubMedGoogle Scholar
  95. Takahashi H, Scott TK (1993) Intensity of hydrotropism for the induction of root hydrotropism and sensing of the hydrostimulus by the root cap. Plant Cell Environ 16:99–103. doi: 10.1111/j.1365-3040.1993.tb00850.x PubMedGoogle Scholar
  96. Takahashi H, Suge H (1991) Root hydrotropism of an agravitropic pea mutant, ageotropum. Physiol Plant 82:24–31. doi: 10.1111/j.1399-3054.1991.tb02898.x Google Scholar
  97. Takahashi H, Brown CS, Dreschel TW, Scott TK (1992a) Hydrotropism in pea roots in a porous-tube water delivery system. HortScience 27:430–432PubMedGoogle Scholar
  98. Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211. doi: 10.1007/s00425-002-0840-3 PubMedGoogle Scholar
  99. Takahashi H, Mizuno H, Kamada M, Fujii N, Higashitani A, Kamigaichi S, Aizawa S, Mukai C, Shimazu T, Fukui K (1999) A space flight experiment for the study of gravimorphogenesis and hydrotropism in cucumber seedlings. J Plant Res 112:497–505. doi: 10.1007/PL00013906 PubMedGoogle Scholar
  100. Takahashi H, Scott TK, Suge H (1992b) Stimulation of root elongation and curvature by calcium. Plant Physiol 98:246–252PubMedGoogle Scholar
  101. Takahashi H, Takano M, Fujii N, Yamashita M, Suge H (1996) Induction of hydrotropism in clinorotated seedling roots of Alaska pea, Pisum sativum L. J Plant Res 109:335–337. doi: 10.1007/BF02344481 PubMedGoogle Scholar
  102. Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810. doi: 10.1104/pp.018853 PubMedGoogle Scholar
  103. Takano M (1999) Mechanism of hydrotropic response in seedling roots. Ph D thesis (Tohoku University, Sendai)Google Scholar
  104. Takano M, Fujii N, Higashitani A, Nishitani K, Hirasawa T, Takahashi H (1999) Endoxyloglucan transferase cDNA isolated from pea roots and its fluctuating expression in hydrotropically responding roots. Plant Cell Physiol 40:135–142PubMedGoogle Scholar
  105. Takano M, Takahashi H, Hirasawa T, Suge H (1995) Hydrotropism in roots: sensing of a gradient in water potential by the root cap. Planta 197:410–413. doi: 10.1007/BF00202664 Google Scholar
  106. Takano M, Takahashi H, Suge H (1997) Calcium requirement for the induction of hydrotropism and enhancement of calcium-induced curvature by water stress in primary roots of pea, Pisum sativum L. Plant Cell Physiol 38:385–391Google Scholar
  107. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721PubMedGoogle Scholar
  108. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822PubMedGoogle Scholar
  109. Trewavas AJ (1992) What remains of the Cholodny-Went theory? Plant Cell Environ 15:761–794PubMedGoogle Scholar
  110. Tsuda S, Miyamoto N, Takahashi H, Ishihara K, Hirasawa T (2003) Roots of Pisum sativum L. exhibit hydrotropism in response to a water potential gradient in vermiculite. Ann Bot (Lond) 92:767. doi: 10.1093/aob/mcg200 Google Scholar
  111. Tsusumi D, Kosugi K, Mizuyama T (2003) Effect of hydrotropism on root system development in soybean (Glycine max): growth experiments and a model simulation. J Plant Growth Regul 21:441–458. doi: 10.1007/s00344-003-0006-y Google Scholar
  112. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedGoogle Scholar
  113. Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–1118PubMedGoogle Scholar
  114. Vitha S, Zhao L, Sack FD (2000) Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol 122:453–462. doi: 10.1104/pp.122.2.453 PubMedGoogle Scholar
  115. Went FW, Thimann KV (1937) Phytohormones. New York, MacMillanGoogle Scholar
  116. Wu G, Lewis DR, Spalding EP (2007) Mutations in Arabidopsis Multidrug Resistance-Like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19:1826–1837. doi: 10.1105/tpc.106.048777 PubMedGoogle Scholar
  117. Yamamoto KT (2003) Happy end in sight after 70 years of controversy. Trends Plant Sci 8:359–360. doi: 10.1016/S1360-1385(03)00154-7 PubMedGoogle Scholar
  118. Yamazoe A, Hayashi K, Kepinski S, Leyser O, Nozaki H (2005) Characterization of terfestatin A, a novel specific inhibitor for auxin signaling. Plant Physiol 139:779–789. doi: 10.1104/pp.105.068924 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hideyuki Takahashi
    • 1
  • Yutaka Miyazawa
    • 1
  • Nobuharu Fujii
    • 1
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations