Plant Molecular Biology

, Volume 69, Issue 4, pp 473–488

Role of plant hormones in plant defence responses

Article

Abstract

Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.

Keywords

Hormones Plant defence Pathogen Virulence Signaling Peptide Biotrophs Necrotrophs 

References

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedGoogle Scholar
  2. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660. doi:10.1016/j.cub.2008.04.034 PubMedGoogle Scholar
  3. Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186. doi:10.1111/j.1365-3059.2006.01340.x Google Scholar
  4. Adie BA, Perez-Perez J et al (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defences in Arabidopsis. Plant Cell 19:1665–1681. doi:10.1105/tpc.106.048041 PubMedGoogle Scholar
  5. Anderson JP, Badruzsaufari E, Schenk PM et al (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defence gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479. doi:10.1105/tpc.104.025833 PubMedGoogle Scholar
  6. Asselbergh B, Achuo AE, Hofte M, Van Gijsegem F (2008) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24PubMedGoogle Scholar
  7. Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501. doi:10.1104/pp.128.2.491 PubMedGoogle Scholar
  8. Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45:95–107. doi:10.1016/j.plaphy.2007.01.002 PubMedGoogle Scholar
  9. Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318PubMedGoogle Scholar
  10. Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signaling: salicylate versus jasmonate. Plant Biol Stuttg 8:1–10. doi:10.1055/s-2005-872705 PubMedGoogle Scholar
  11. Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact 20:1406–1420. doi:10.1094/MPMI-20-11-1406 PubMedGoogle Scholar
  12. Brodersen P, Petersen M et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546. doi:10.1111/j.1365-313X.2006.02806.x PubMedGoogle Scholar
  13. Broekaert WF, Delaure SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416. doi:10.1146/annurev.phyto.44.070505.143440 PubMedGoogle Scholar
  14. Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838. doi:10.1104/pp.107.115683 PubMedGoogle Scholar
  15. Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117. doi:10.1111/j.1365-313X.2007.03400.x PubMedGoogle Scholar
  16. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136. doi:10.1073/pnas.0704901104 PubMedGoogle Scholar
  17. Chinchilla D, Zipfel C, Robatzek S et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500. doi:10.1038/nature05999 PubMedGoogle Scholar
  18. Chini A, Fonseca S, Fernandez G, Adie BR et al (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671. doi:10.1038/nature06006 PubMedGoogle Scholar
  19. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814PubMedGoogle Scholar
  20. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM (2005) Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA 102:1791–1796PubMedGoogle Scholar
  21. de Torres-Zabala M, Truman W, Bennett MH et al (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J 26:1434–1443. doi:10.1038/sj.emboj.7601575 PubMedGoogle Scholar
  22. De Vos M, Van Oosten VR, Van Poecke RM et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937. doi:10.1094/MPMI-18-0923 PubMedGoogle Scholar
  23. Depuydt S, Dolezal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D (2008) Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:1267–1281. doi:10.1104/pp.107.113969 PubMedGoogle Scholar
  24. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi:10.1038/nature03543 PubMedGoogle Scholar
  25. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240. doi:10.1105/tpc.107.055657 PubMedGoogle Scholar
  26. Dombrecht B, Xue GP et al (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245. doi:10.1105/tpc.106.048017 PubMedGoogle Scholar
  27. Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552. doi:10.1016/j.pbi.2004.07.005 PubMedGoogle Scholar
  28. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566PubMedGoogle Scholar
  29. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defence signaling. Curr Opin Plant Biol 10:366–371. doi:10.1016/j.pbi.2007.04.020 PubMedGoogle Scholar
  30. Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6:105–134. doi:10.1111/j.1467-7652.2007.00315.x PubMedGoogle Scholar
  31. Flors V, Ton J, van Doorn R et al (2008) Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92. doi:10.1111/j.1365-313X.2007.03397.x PubMedGoogle Scholar
  32. Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923 PubMedGoogle Scholar
  33. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. doi:10.1038/nature07271 PubMedGoogle Scholar
  34. Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420. doi:10.1016/j.pbi.2006.05.013 PubMedGoogle Scholar
  35. Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414. doi:10.1105/tpc.106.047415 PubMedGoogle Scholar
  36. He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115. doi:10.1016/j.cub.2007.05.036 PubMedGoogle Scholar
  37. Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222. doi:10.1073/pnas.0705306104 PubMedGoogle Scholar
  38. Hernandez-Blanco C, Feng DX, Hu J et al (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903. doi:10.1105/tpc.106.048058 PubMedGoogle Scholar
  39. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. doi:10.1146/annurev.arplant.59.032607.092825 PubMedGoogle Scholar
  40. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103. doi:10.1073/pnas.0603727103 PubMedGoogle Scholar
  41. Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci USA 104:10732–10736PubMedGoogle Scholar
  42. Igari K, Endo S, Hibara KI, Aida M, Sakakibara H, Kawasaki T, Tasaka M (2008) Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J 55:14–27PubMedGoogle Scholar
  43. Jonak C, Hirt H (2002) Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 7:457–461PubMedGoogle Scholar
  44. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286 PubMedGoogle Scholar
  45. Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, Preston CA, Baldwin IT (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342. doi:10.1007/PL00008142 PubMedGoogle Scholar
  46. Kaliff M, Staal J, Myrenas M, Dixelius C (2007) ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling. Mol Plant Microbe Interact 20:335–345. doi:10.1094/MPMI-20-4-0335 PubMedGoogle Scholar
  47. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105. doi:10.1073/pnas.0802332105 PubMedGoogle Scholar
  48. Kemmerling B, Schwedt A, Rodriguez P et al (2007) The BRI1-associated kinase 1, BAK1, has a Brassinoli-independent role in plant cell-death control. Curr Biol 17:1116–1122. doi:10.1016/j.cub.2007.05.046 PubMedGoogle Scholar
  49. Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865. doi:10.1104/pp.106.090662 PubMedGoogle Scholar
  50. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi:10.1038/nature03542 PubMedGoogle Scholar
  51. Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9. doi:10.1016/j.pmpp.2004.11.002 Google Scholar
  52. Koornneef A, Pieterse CM (2008) Cross talk in defence signaling. Plant Physiol 146:839–844. doi:10.1104/pp.107.112029 PubMedGoogle Scholar
  53. Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297. doi:10.1007/s00344-003-0058-z PubMedGoogle Scholar
  54. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defence. Curr Opin Plant Biol 5:325–331. doi:10.1016/S1369-5266(02)00275-3 PubMedGoogle Scholar
  55. Kurosawa E (1926) Experimental studies on the nature of the substance secreted by the “bakanae” fungus. Nat Hist Soc Formosa 16:213–227Google Scholar
  56. Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defences during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800. doi:10.1094/MPMI-19-0789 PubMedGoogle Scholar
  57. Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576. doi:10.1046/j.1365-313X.2003.01646.x PubMedGoogle Scholar
  58. Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433. doi:10.1016/j.cub.2006.05.014 PubMedGoogle Scholar
  59. Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301PubMedGoogle Scholar
  60. Li L, Li C, Lee GI, Howe GA (2002a) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421. doi:10.1073/pnas.072072599 PubMedGoogle Scholar
  61. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002b) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222. doi:10.1016/S0092-8674(02)00812-7 PubMedGoogle Scholar
  62. Li C, Williams MM, Loh YT, Lee GI, Howe GA (2002c) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130:494–503. doi:10.1104/pp.005314 PubMedGoogle Scholar
  63. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defence. Plant Cell 16:319–331. doi:10.1105/tpc.016980 PubMedGoogle Scholar
  64. Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defence. Plant J 46:477–491. doi:10.1111/j.1365-313X.2006.02712.x PubMedGoogle Scholar
  65. Llorente F, Muskett P, Sánchez-Vallet A, López G, Ramos B, Sánchez-Rodríguez C, Jordá L, Parker J, Molina A (2008) Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 1:496–509Google Scholar
  66. Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472. doi:10.1016/j.pbi.2007.08.008 PubMedGoogle Scholar
  67. Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540. doi:10.1016/j.pbi.2005.07.003 PubMedGoogle Scholar
  68. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defence. Plant Cell 15:165–178. doi:10.1105/tpc.007468 PubMedGoogle Scholar
  69. Lorenzo O, Chico JM et al (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defence responses in Arabidopsis. Plant Cell 16:1938–1950. doi:10.1105/tpc.022319 PubMedGoogle Scholar
  70. MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442PubMedGoogle Scholar
  71. Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48:833–842. doi:10.1093/pcp/pcm058 PubMedGoogle Scholar
  72. Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674. doi:10.1146/annurev.arplant.56.032604.144204 PubMedGoogle Scholar
  73. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414. doi:10.1016/j.pbi.2005.05.015 PubMedGoogle Scholar
  74. McGrath KC, Dombrecht B, Manners JM et al (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959. doi:10.1104/pp.105.068544 PubMedGoogle Scholar
  75. McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573. doi:10.1126/science.1549783 PubMedGoogle Scholar
  76. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980. doi:10.1016/j.cell.2006.06.054 PubMedGoogle Scholar
  77. Meyer Y, Siala W, Bashandy T et al (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600. doi:10.1016/j.bbamcr.2007.10.017 PubMedGoogle Scholar
  78. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830. doi:10.1105/tpc.106.042705 PubMedGoogle Scholar
  79. Midoh N, Iwata M (1996) Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9–18PubMedGoogle Scholar
  80. Mohr PG, Cahill DM (2001) Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiol Mol Plant Pathol 58:31–41. doi:10.1006/pmpp.2000.0306 Google Scholar
  81. Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469. doi:10.1071/FP02231 Google Scholar
  82. Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191. doi:10.1007/s10142-006-0041-4 PubMedGoogle Scholar
  83. Muessig C, Lisso J, Coll-Garcia D, Altmann T (2006) Molecular analysis of brassinosteroid action. Plant Biol Stuttg 8:291–296. doi:10.1055/s-2005-873043 Google Scholar
  84. Muller B, Sheen J (2007) Advances in cytokinin signaling. Science 318:68–69. doi:10.1126/science.1145461 PubMedGoogle Scholar
  85. Mur LA, Kenton P et al (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262. doi:10.1104/pp.105.072348 PubMedGoogle Scholar
  86. Nakashita H, Yasuda M, Nitta T et al (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898. doi:10.1046/j.1365-313X.2003.01675.x PubMedGoogle Scholar
  87. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212. doi:10.1016/S0092-8674(02)00814-0 PubMedGoogle Scholar
  88. Narvaez-Vasquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369. doi:10.1007/s00425-003-1115-3 PubMedGoogle Scholar
  89. Narvaez-Vasquez J, Pearce G, Ryan CA (2005) The plant cell wall matrix harbors a precursor of defense signaling peptides. Proc Natl Acad Sci USA 102:12974–12977. doi:10.1073/pnas.0505248102 PubMedGoogle Scholar
  90. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi:10.1126/science.1126088 PubMedGoogle Scholar
  91. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655. doi:10.1016/j.cub.2008.03.060 PubMedGoogle Scholar
  92. Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139. doi:10.1111/j.1365-313X.2007.03039.x PubMedGoogle Scholar
  93. O’Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ (2003) Susceptible to intolerance—a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33:245–257. doi:10.1046/j.1365-313X.2003.01619.x PubMedGoogle Scholar
  94. Orozco-Cardenas M, McGurl B, Ryan CA (1993) Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc Natl Acad Sci USA 90:8273–8276. doi:10.1073/pnas.90.17.8273 PubMedGoogle Scholar
  95. Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN (2005) Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79:2549–2558PubMedGoogle Scholar
  96. Padmanabhan MS, Shiferaw H, Culver JN (2006) The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 19:864–873. doi:10.1094/MPMI-19-0864 PubMedGoogle Scholar
  97. Padmanabhan MS, Kramer SR et al (2008) Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 82:2477–2485. doi:10.1128/JVI.01865-07 PubMedGoogle Scholar
  98. Paponov I, Paponov M, Teale W, Menges M, Chkrabortee S, Murray J, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337. doi:10.1093/mp/ssm021 Google Scholar
  99. Park SW, Kaimoyo E, Kumar D et al (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116. doi:10.1126/science.1147113 PubMedGoogle Scholar
  100. Parry G, Estelle M (2006) Auxin receptors: a new role for F-box proteins. Curr Opin Cell Biol 18:152–156. doi:10.1016/j.ceb.2006.02.001 PubMedGoogle Scholar
  101. Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91. doi:10.1111/j.1365-313X.2007.03119.x PubMedGoogle Scholar
  102. Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278:30044–30050. doi:10.1074/jbc.M304159200 PubMedGoogle Scholar
  103. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897. doi:10.1126/science.253.5022.895 PubMedGoogle Scholar
  104. Pearce G, Moura DS, Stratmann J, Ryan CA (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820. doi:10.1038/35081107 PubMedGoogle Scholar
  105. Pearce G, Siems WF, Bhattacharya R, Chen YC, Ryan CA (2007) Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. J Biol Chem 282:17777–17784. doi:10.1074/jbc.M701543200 PubMedGoogle Scholar
  106. Penninckx IA, Thomma BP, Buchala A et al (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113PubMedGoogle Scholar
  107. Petersen M, Brodersen P, Naested H et al (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120. doi:10.1016/S0092-8674(00)00213-0 PubMedGoogle Scholar
  108. Piroux N, Saunders K et al (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSK eta, a component of the brassinosteroid signaling pathway. Virology 362:428–440. doi:10.1016/j.virol.2006.12.034 PubMedGoogle Scholar
  109. Ren F, Lu Y (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor a gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171:286–292. doi:10.1016/j.plantsci.2006.04.001 Google Scholar
  110. Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147. doi:10.1105/tpc.104.026120 PubMedGoogle Scholar
  111. Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379. doi:10.1016/j.pbi.2007.06.003 PubMedGoogle Scholar
  112. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121PubMedGoogle Scholar
  113. Sakakibara H, Kasahara H, Ueda N et al (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102:9972–9977. doi:10.1073/pnas.0500793102 PubMedGoogle Scholar
  114. Schenk PM, Kazan K et al (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660. doi:10.1073/pnas.97.21.11655 PubMedGoogle Scholar
  115. Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377. doi:10.1016/j.pbi.2005.05.008 PubMedGoogle Scholar
  116. Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27. doi:10.1016/j.chom.2008.05.017 PubMedGoogle Scholar
  117. Siemens J, Keller I, Sarx J et al (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494. doi:10.1094/MPMI-19-0480 PubMedGoogle Scholar
  118. Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defences against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847. doi:10.1073/pnas.0708139104 PubMedGoogle Scholar
  119. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127. doi:10.1105/tpc.104.023549 PubMedGoogle Scholar
  120. Staswick PE, Serban B et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627. doi:10.1105/tpc.104.026690 PubMedGoogle Scholar
  121. Tanaka N, Matsuoka M et al (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631. doi:10.1111/j.1365-3040.2005.01441.x PubMedGoogle Scholar
  122. Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58. doi:10.1890/02-0710 Google Scholar
  123. Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53. doi:10.1111/j.1365-313X.2006.02725.x PubMedGoogle Scholar
  124. Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448:661–665. doi:10.1038/nature05960 PubMedGoogle Scholar
  125. Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68. doi:10.1016/S0952-7915(00)00183-7 PubMedGoogle Scholar
  126. Ton J, Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130. doi:10.1111/j.1365-313X.2004.02028.x PubMedGoogle Scholar
  127. Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defence signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080. doi:10.1073/pnas.0605423104 PubMedGoogle Scholar
  128. Ueguchi-Tanaka M, Ashikari M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698. doi:10.1038/nature04028 PubMedGoogle Scholar
  129. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. doi:10.1038/nature07272 PubMedGoogle Scholar
  130. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defence-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425 PubMedGoogle Scholar
  131. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123. doi:10.1371/journal.ppat.0020123
  132. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790. doi:10.1016/j.cub.2007.09.025 PubMedGoogle Scholar
  133. Wasilewskaa A, Vlad F, Sirichandra C et al (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217Google Scholar
  134. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697Google Scholar
  135. Whenham RJ, Fraser RSS, Brown LP, Payne JA (1986) Tobacco-Mosaic-Virus-induced increase in abscisic-acid concentration in tobacco-leaves—intracellular location in light and dark-green areas, and relationship to symptom development. Planta 168:592–598. doi:10.1007/BF00392281 Google Scholar
  136. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735. doi:10.1093/aob/mci083 Google Scholar
  137. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094PubMedGoogle Scholar
  138. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H(2)O(2) production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451. doi:10.1111/j.1365-313X.2008.03433.x PubMedGoogle Scholar
  139. Yamada T (1993) The role of auxin in plant-disease development. Annu Rev Phytopathol 31:253–273. doi:10.1146/annurev.py.31.090193.001345 PubMedGoogle Scholar
  140. Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX, Zhang YY, He ZH (2008) Altered disease development in the eui mutants and eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537Google Scholar
  141. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692. doi:10.1105/tpc.107.054296 PubMedGoogle Scholar
  142. Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol Biol 41:443–454. doi:10.1023/A:1006372612574 PubMedGoogle Scholar
  143. Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875. doi:10.1104/pp.106.090035 PubMedGoogle Scholar
  144. Zhang ZQ, Li Q, Li ZM et al (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145:450–464. doi:10.1104/pp.107.106021 PubMedGoogle Scholar
  145. Zheng SJ, Dicke M (2008) Ecological genomics of plant-insect interactions: from gene to community. Plant Physiol 146:812–817. doi:10.1104/pp.07.111542 PubMedGoogle Scholar
  146. Zhu S, Gao F, Cao X et al (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945. doi:10.1104/pp.105.072306 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.The Sainsbury LaboratoryJohn Innes CentreNorwichUK

Personalised recommendations