Plant Molecular Biology

, Volume 69, Issue 5, pp 517–528 | Cite as

A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis

  • Paul Hein
  • Jana Stöckel
  • Stefan Bennewitz
  • Ralf Oelmüller
Article

Abstract

Dpt1 (d efect in p saA/B t ranscript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b 6 /f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.

Keywords

Arabidopsis Chloroplast Gene expression Photosystem I Map-based cloning 

Abbreviations

dpt1

Defect in psaA/B transcript accumulation 1

PSI

Photosystem I

UMP

Uridine monophosphate

Notes

Acknowledgements

This work was supported by the Friedrich-Schiller-University Jena. We thank Dr. W. Fischer for the electron micrographs, Bernard Lepetit for the help with the 77 K measurements, Dr. Masato Nakai for providing the AtCnfU-IVb antibodies, and H. Becker for skillful assistance. We thank Lars Dietzel, Sebastian Steiner and Iris Camehl for their help and the NASC stock center for providing the insertion line N829192.

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi: 10.1126/science.1086391 PubMedCrossRefGoogle Scholar
  2. Amann K, Lezhneva L, Wanner G, Herrmann RG, Meurer J (2004) ACCUMULATION OF PHOTOSYSTEM ONE1, a member of a novel gene family, is required for accumulation of [4Fe–4S] cluster-containing chloroplast complexes and antenna proteins. Plant Cell 16:3084–3097. doi: 10.1105/tpc.104.024935 PubMedCrossRefGoogle Scholar
  3. Ballottari M, Govoni C, Caffarri S, Morosinotto T (2004) Stoichiometry of LHCI antenna polypeptides and characterization of gap and linker pigments in higher plants photosystem I. Eur J Biochem 271:4659–4665. doi: 10.1111/j.1432-1033.2004.04426.x PubMedCrossRefGoogle Scholar
  4. Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic messenger-RNAs. EMBO J 7:2637–2644PubMedGoogle Scholar
  5. Barkan A (1993) Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5:389–402PubMedCrossRefGoogle Scholar
  6. Barneche F, Winter V, Crevecoeur M, Rochaix JD (2006) ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918. doi: 10.1038/sj.emboj.7601472 PubMedCrossRefGoogle Scholar
  7. Barth C, Krause GH (2002) Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta 216:273–279. doi: 10.1007/s00425-002-0843-0 PubMedCrossRefGoogle Scholar
  8. Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144. doi: 10.1006/geno.1994.1023 PubMedCrossRefGoogle Scholar
  9. Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635. doi: 10.1038/nature02200 PubMedCrossRefGoogle Scholar
  10. Briozzo P, Evrin C, Meyer P, Assairi L, Joly N, Barzu O, Gilles AM (2005) Structure of Escherichia coli UMP kinase differs from that of other nucleoside monophosphate kinases and sheds new light on enzyme regulation. J Biol Chem 280:25533–25540. doi: 10.1074/jbc.M501849200 PubMedCrossRefGoogle Scholar
  11. Chitnis PR (2001) Photosystem I: function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626. doi: 10.1146/annurev.arplant.52.1.593 PubMedCrossRefGoogle Scholar
  12. Cournac L, Redding K, Bennoun P, Peltier G (1997) Limited photosynthetic electron flow but no CO2 fixation in Chlamydomonas mutants lacking photosystem I. FEBS Lett 416:65–68. doi: 10.1016/S0014-5793(97)01170-8 PubMedCrossRefGoogle Scholar
  13. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi: 10.1006/jmbi.2000.3903 PubMedCrossRefGoogle Scholar
  14. Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Oquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob Change Biol 10:995–1008. doi: 10.1111/j.1365-2486.2004.00781.x CrossRefGoogle Scholar
  15. Fey V, Wagner R, Bräutigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280:5318–5328. doi: 10.1074/jbc.M406358200 PubMedCrossRefGoogle Scholar
  16. Haldrup A, Lunde C, Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278:33276–33283. doi: 10.1074/jbc.M305106200 PubMedCrossRefGoogle Scholar
  17. Hayashida N, Matsubayashi T, Shinozaki K, Sugiura M, Inoue K, Hiyama T (1987) The gene for the 9 kd polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the photosystem I complex, in tobacco chloroplast DNA. Curr Genet 12:247–250. doi: 10.1007/BF00435285 PubMedCrossRefGoogle Scholar
  18. Heim U, Weber H, Bäumlein H, Wobus U (1993) A sucrose-synthase gene of Vicia faba L.: expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta 191:394–401. doi: 10.1007/BF00195698 PubMedCrossRefGoogle Scholar
  19. Jenkins BD, Barkan A (2001) Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group II intron splicing in chloroplasts. EMBO J 20:872–879. doi: 10.1093/emboj/20.4.872 PubMedCrossRefGoogle Scholar
  20. Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352. doi: 10.1016/j.bbabio.2007.03.004 PubMedCrossRefGoogle Scholar
  21. Jiao S, Thornsberry JM, Elthon TE, Newton KJ (2005) Biochemical and molecular characterization of photosystem I deficiency in the NCS6 mitochondrial mutant of maize. Plant Mol Biol 57:303–313. doi: 10.1007/s11103-004-7792-x PubMedCrossRefGoogle Scholar
  22. Jordan P, Fromme P, Witt HT, Klukas O, Sänger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917. doi: 10.1038/35082000 PubMedCrossRefGoogle Scholar
  23. Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N (1998) pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 280:571–582. doi: 10.1006/jmbi.1998.1910 PubMedCrossRefGoogle Scholar
  24. Kusnetsov V, Herrmann RG, Kulaeva ON, Oelmüller R (1998) Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol Gen Genet 259:21–28PubMedGoogle Scholar
  25. Lee JW, Tevault CV, Owens TG, Greenbaum E (1996) Oxygenic photoautotrophic growth without photosystem I. Science 273:364–367. doi: 10.1126/science.273.5273.364 PubMedCrossRefGoogle Scholar
  26. Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188. doi: 10.1046/j.1365-313X.2002.01349.x PubMedCrossRefGoogle Scholar
  27. Lezhneva L, Meurer J (2004) The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J 38:740–753. doi: 10.1111/j.1365-313X.2004.02081.x PubMedCrossRefGoogle Scholar
  28. Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185PubMedGoogle Scholar
  29. Lu Y, Turner RJ, Switzer RL (1996) Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon. Proc Natl Acad Sci USA 93:14462–14467PubMedCrossRefGoogle Scholar
  30. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi: 10.1093/jexbot/51.345.659 PubMedCrossRefGoogle Scholar
  31. Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher-plant chloroplast RNA levels. EMBO J 6:1571–1579PubMedGoogle Scholar
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–493. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  33. Naver H, Boudreau E, Rochaix JD (2001) Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745PubMedCrossRefGoogle Scholar
  34. Perron K, Goldschmidt-Clermont M, Rochaix JD (1999) A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 18:6481–6490. doi: 10.1093/emboj/18.22.6481 PubMedCrossRefGoogle Scholar
  35. Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48:271–276PubMedGoogle Scholar
  36. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi: 10.1016/S0005-2728(89)80347-0 CrossRefGoogle Scholar
  37. Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23–H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480. doi: 10.1126/science.8392752 PubMedCrossRefGoogle Scholar
  38. Redding K, Cournac L, Vassiliev IR, Golbeck JH, Peltier G, Rochaix JD (1999) Photosystem I is indispensable for photoautotrophic growth, CO2 fixation, and H2 photoproduction in Chlamydomonas reinhardtii. J Biol Chem 274:10466–10473. doi: 10.1074/jbc.274.15.10466 PubMedCrossRefGoogle Scholar
  39. Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102. doi: 10.1083/jcb.139.1.95 PubMedCrossRefGoogle Scholar
  40. Rushlow KE, Hallick RB (1982) The isolation and purification of a transcriptionally active chromosome from chloroplast of Euglena gracilis. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 543–550Google Scholar
  41. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  42. Smart LB, Anderson SL, McIntosh L (1991) Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J 10:3289–3296PubMedGoogle Scholar
  43. Stöckel J, Oelmüller R (2004) A novel protein for photosystem I biogenesis. J Biol Chem 279:10243–10251. doi: 10.1074/jbc.M309246200 PubMedCrossRefGoogle Scholar
  44. Stöckel J, Bennewitz S, Hein P, Oelmüller R (2006) The evolutionary conserved tetratrico peptide repeat protein pale yellow green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol 141:870–878. doi: 10.1104/pp.106.078147 PubMedCrossRefGoogle Scholar
  45. Sugiura M (2003) History of chloroplast genomics. Photosynth Res 76:371–377. doi: 10.1023/A:1024913304263 PubMedCrossRefGoogle Scholar
  46. Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M (2004) The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16:993–1007. doi: 10.1105/tpc.020511 PubMedCrossRefGoogle Scholar
  47. Zhou L, Lacroute F, Thornburg R (1998) Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. Plant Physiol 117:245–254. doi: 10.1104/pp.117.1.245 PubMedCrossRefGoogle Scholar
  48. Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836. doi: 10.1146/annurev.arplant.57.032905.105421 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Paul Hein
    • 1
  • Jana Stöckel
    • 2
  • Stefan Bennewitz
    • 2
  • Ralf Oelmüller
    • 1
  1. 1.Institute of General Botany and Plant PhysiologyFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations