Plant Molecular Biology

, Volume 69, Issue 3, pp 337–346

A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance

  • Hui Li
  • Shan-Yue Zhou
  • Wen-Sheng Zhao
  • Sheng-Chang Su
  • You-Liang Peng


Wall-associated protein kinases (WAKs) are a new group of receptor-like kinases (RLK) recently identified in Arabidopsis. A cDNA encoding a novel WAK was isolated from rice and was named OsWAK1 (Oryza sativa WAK). The deduced amino acid sequence of OsWAK1 showed 27.6% identity to WAK2 from Arabidopsis. OsWAK1 not only has the ability of autophosphorylation but also can phosphorylate OsRFP1, a putative transcription regulator recently identified in rice. OsRFP1 strongly interacts with the kinase domain of OsWAK1. This demonstrated that OsWAK1 is a functional protein kinase. A fusion protein of OsWAK1 with GFP was found to be localized on the cell surface. Plasmolysis experiments further revealed OsWAK1 is associated with the cell wall. Northern blotting analysis showed that infection of the rice blast fungus, Magnaporthe oryzae significantly induced the OsWAK1 transcripts, and the accumulation of OsWAK1 mRNA occurred earlier and was more abundant in rice leaves infected with an incompatible race than with a compatible race of the blast fungus. OsWAK1 was also induced after treatment by mechanical wounding, SA and MeJA, but not by ABA. These results imply that OsWAK1 is a novel gene involved in plant defense. Furthermore, six transgenic rice lines with constitutive expression of OsWAK1 became resistant to the compatible race. However, OsWAK1 expression was undetectable in leaves, stems and flowers but very weak in roots under normal growth conditions. This provides functional evidence that induction of OsWAK1 as a novel RLK plays important roles in plant disease resistance.


Disease resistance Magnaporthe oryzae Rice Wall-associated protein kinase Interacting protein 


  1. Anderson CM, Wagner TA, Perret M, He Z-H, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197–206. doi:10.1023/A:1010691701578 PubMedCrossRefGoogle Scholar
  2. Becraft PW, Stinard PS, McCarty DR (1996) CRINKL Y4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273:1406–1409. doi:10.1126/science.273.5280.1406 PubMedCrossRefGoogle Scholar
  3. Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N (2002) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14:1077–1092PubMedCrossRefGoogle Scholar
  4. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2 PubMedCrossRefGoogle Scholar
  5. Church GM, Gilbert W (1984) Genomic sequence. Proc Natl Acad Sci USA 81:1991–1995. doi:10.1073/pnas.81.7.1991 PubMedCrossRefGoogle Scholar
  6. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585. doi:10.1016/S0092-8674(00)80239-1 PubMedCrossRefGoogle Scholar
  7. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. doi:10.1146/annurev.arplant.48.1.355 PubMedCrossRefGoogle Scholar
  8. Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274. doi:10.1016/S1360-1385(97)86349-2 CrossRefGoogle Scholar
  9. Fan J, Peng Y-L, Qun Z, Lamb C (1999) Cloning and characterization of an elicitor inducible receptor like kinase cDNA from rice suspension cells. Acta Phytopathol Sin 29:235–241 (in Chinese)Google Scholar
  10. Friedrichsen DM, Joazeiro CAP, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is ubiquitously expressed leucine-rich receptor serine/threonine kinase. Plant Physiol 123:1247–1255. doi:10.1104/pp.123.4.1247 PubMedCrossRefGoogle Scholar
  11. Gens JS, Fujiki M, Pickard BG (2000) Arabinogalactan protein and wall associated kinase in a plasmalemmal reticulum with specialized vertices. Protoplasma 212:115–134. doi:10.1007/BF01279353 PubMedCrossRefGoogle Scholar
  12. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011. doi:10.1016/S1097-2765(00)80265-8 PubMedCrossRefGoogle Scholar
  13. He Z-H, Fujiki M, Kohorn BD (1996) A cell wall-associated receptor-like kinase. J Biol Chem 271:19789–19793. doi:10.1074/jbc.271.33.19789 PubMedCrossRefGoogle Scholar
  14. He Z-H, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall-associated receptor kinase for survival during the pathogen response. Plant J 14:55–63. doi:10.1046/j.1365-313X.1998.00092.x PubMedCrossRefGoogle Scholar
  15. He Z-H, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196. doi:10.1023/A:1006197318246 PubMedCrossRefGoogle Scholar
  16. Heese A, Hann DR, Gimenez-ibanex S, Jones A, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 29:12217–12222. doi:10.1073/pnas.0705306104 CrossRefGoogle Scholar
  17. Hou X-W, Tong H-Y, Selby J, Dewitt J, Peng X-X, He Z-H (2005) Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol 139:1704–1716. doi:10.1104/pp.105.066910 PubMedCrossRefGoogle Scholar
  18. Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, control floral organ abscission. Genes Dev 14:108–117PubMedGoogle Scholar
  19. Lally D, Ingmire P, Tong H-Y, He Z-H (2001) Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:1317–1331PubMedCrossRefGoogle Scholar
  20. Morris ER, Walker JC (2003) Receptor-like protein kinases: the key to response. Curr Opin Plant Biol 6(4):339–342. doi:10.1016/S1369-5266(03)00055-4 PubMedCrossRefGoogle Scholar
  21. Mu J-H, Lee H-S, Kao T-H (1994) Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell 6:709–721PubMedCrossRefGoogle Scholar
  22. Peng Y-L, Shishiyama J (1988) Temporal sequence of cytological events in rice leaves affected with Pyriculria oryzae. Can J Bot 66:730–735. doi:10.1139/b88-107 CrossRefGoogle Scholar
  23. Peng Y-L, Shirano Y, Ohta H, Hibino T, Tanaka K, Shibata D (1994) A novel lipoxygenase from rice: primary structure and specific expression upon incompatible infection with rice blast fungus. J Biol Chem 269:3755–3761PubMedGoogle Scholar
  24. Peng Y-L et al (1996) Isolation and characterization of lipoxygenases from rice induced by incompatible infection of rice blast fungus, Magnaporthe oryzae. In: Khush G (ed) Rice genetics III, pp 835–841Google Scholar
  25. Rancé I, Fournier J, Esquerré-Tugayé MT (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA 95:6554–6559. doi:10.1073/pnas.95.11.6554 PubMedCrossRefGoogle Scholar
  26. Schenk PW, Snaar-Jagalska BE (1999) Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta 1449(1):1–24. doi:10.1016/S0167-4889(98)00178-5 PubMedCrossRefGoogle Scholar
  27. Sessa G, Ascenzo MD, Martin GB (2000) Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. EMBO J 19(10):2257–2269. doi:10.1093/emboj/19.10.2257 PubMedCrossRefGoogle Scholar
  28. Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768. doi:10.1073/pnas.181141598 PubMedCrossRefGoogle Scholar
  29. Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KFX, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234. doi:10.1105/tpc.020834 PubMedCrossRefGoogle Scholar
  30. Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 279:1804–1806. doi:10.1126/science.270.5243.1804 CrossRefGoogle Scholar
  31. Sun X-L, Cao Y-L, Yang Z-F, Xu C-G, Li X-H, Wang S-P, Zhang Q-F (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encoding a LRR receptor kinase-like protein. Plant J 37:517–527. doi:10.1046/j.1365-313X.2003.01976.x PubMedCrossRefGoogle Scholar
  32. Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916. doi:10.1038/35002628 PubMedCrossRefGoogle Scholar
  33. Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauchmani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defence-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111. doi:10.1073/pnas.95.25.15107 PubMedCrossRefGoogle Scholar
  34. Verica JA, He Z-H (2002) The cell wall-associated kinase (WAK) and WAK like kinase gene family. Plant Physiol 129:455–459. doi:10.1104/pp.011028 PubMedCrossRefGoogle Scholar
  35. Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318PubMedCrossRefGoogle Scholar
  36. Walker JC (1994) Structure and function of the receptor-like kinases of higher plants. Plant Mol Biol 26:1599–1609. doi:10.1007/BF00016492 PubMedCrossRefGoogle Scholar
  37. Yokoyama R, Takahashi T, Kato A et al (1998) The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organprimordial. Plant J 15(3):301–310. doi:10.1046/j.1365-313X.1998.00203.x PubMedCrossRefGoogle Scholar
  38. Zhang H, Zhang R, Liang P (1997) Differential screening of differential display cDNA products by reverse northern. Methods Mol Biol 85:87–93PubMedGoogle Scholar
  39. Zhang S-B, Chen C, Li L, Meng L, Singh J, Jiang N, Deng X-W, He Z-H, Lemaux PG (2005a) Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 139:1107–1124. doi:10.1104/pp.105.069005 PubMedCrossRefGoogle Scholar
  40. Zhou S-Y, Zhao W-S, Li H, Guo Z-J, Peng Y-L (2008) Characterization of a novel RING Finger gene OsRFP1, which is induced by ethylene, salicylic acid and blast fungus infection in rice. J Phytopathol 156:396–402. doi:10.1111/j.1439-0434.2007.01383.x CrossRefGoogle Scholar
  41. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the Arabidopsis receptor kinase EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760. doi:10.1016/j.cell.2006.03.037 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hui Li
    • 1
  • Shan-Yue Zhou
    • 1
  • Wen-Sheng Zhao
    • 1
  • Sheng-Chang Su
    • 1
  • You-Liang Peng
    • 1
  1. 1.State Key Laboratory for Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant PathologyChina Agricultural UniversityBeijingChina

Personalised recommendations