Plant Molecular Biology

, 69:437

Hormone interactions during lateral root formation

Article

Abstract

Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsisthaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.

Keywords

Arabidopsis Lateral root initiation Lateral root primordium development Auxin 

References

  1. Ahringer J (2000) NuRD and SIN3. Trends Genet 16:351–356. doi:10.1016/S0168-9525(00)02066-7 PubMedGoogle Scholar
  2. Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot (Lond) 97:883–893. doi:10.1093/aob/mcl027 Google Scholar
  3. Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631. doi:10.1104/pp.103.036897 PubMedGoogle Scholar
  4. Barlow PW, Volkmann D, Baluska F (2004) Polarity in roots. In: Lindsey K (ed) Polarity in plants. Blackwell Publishing, Oxford, pp 192–241Google Scholar
  5. Beeckman T, Burssens S, Inzé D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–411PubMedGoogle Scholar
  6. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602. doi:10.1016/S0092-8674(03)00924-3 PubMedGoogle Scholar
  7. Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332. doi:10.1046/j.0960-7412.2001.01217.x PubMedGoogle Scholar
  8. Blakely LM, Blakely RM, Colowit PM, Elliott DS (1988) Experimental studies on lateral root formation in radish seedling roots. II. Analysis of the dose-response to exogenous auxin. Plant Physiol 87:414–419PubMedGoogle Scholar
  9. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. doi:10.1038/nature03184 PubMedGoogle Scholar
  10. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75. doi:10.1046/j.1365-313X.2003.01707.x PubMedGoogle Scholar
  11. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root development. Plant Cell 13:843–852PubMedGoogle Scholar
  12. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171. doi:10.1016/S1360-1385(03)00051-7 PubMedGoogle Scholar
  13. Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142. doi:10.1101/gad.9.17.2131 PubMedGoogle Scholar
  14. Charlton WA (1996) Lateral root initiation. In: Waisel Y, Eshel A, Kfkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 149–173Google Scholar
  15. Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–60. doi:10.1104/pp.121.1.53 PubMedGoogle Scholar
  16. De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555. doi:10.1046/j.1365-313X.2003.01652.x PubMedGoogle Scholar
  17. De Smet I, Vanneste S, Inzé D, Beeckman T (2006a) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887. doi:10.1007/s11103-005-4547-2 PubMedGoogle Scholar
  18. De Smet I, Zhang H, Inzé D, Beeckman T (2006b) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439. doi:10.1016/j.tplants.2006.07.003 PubMedGoogle Scholar
  19. De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690. doi:10.1242/dev.02753 PubMedGoogle Scholar
  20. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:4441–4445. doi:10.1038/nature03543 Google Scholar
  21. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119. doi:10.1016/j.devcel.2005.05.014 PubMedGoogle Scholar
  22. Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220. doi:10.1126/science.1122847 PubMedGoogle Scholar
  23. DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J 37:340–353. doi:10.1046/j.1365-313X.2003.01964.x PubMedGoogle Scholar
  24. Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y (2006) An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol 60:599–615. doi:10.1007/s11103-005-5257-5 PubMedGoogle Scholar
  25. Dubrovsky JG, Doerner PW, Colon-Carmon A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657. doi:10.1104/pp.124.4.1648 PubMedGoogle Scholar
  26. Dubrovsky JG, Rost TL, Colon-Carmona A, Doerner P (2001) Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30–36PubMedCrossRefGoogle Scholar
  27. Dubrovsky JG, Gambetta GA, Hernandez-Barrera A, Shishkova S, Gonzalez I (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot (Lond) 7:903–915. doi:10.1093/aob/mcj604 Google Scholar
  28. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794. doi:10.1073/pnas.0712307105 PubMedGoogle Scholar
  29. Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138:2396–2405. doi:10.1104/pp.105.062414 PubMedGoogle Scholar
  30. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743. doi:10.1038/nature01387 PubMedGoogle Scholar
  31. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168. doi:10.1046/j.0960-7412.2001.01201.x PubMedGoogle Scholar
  32. Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44:382–395. doi:10.1111/j.1365-313X.2005.02537.x PubMedGoogle Scholar
  33. Fukaki H, Taniguchi N, Tasaka M (2006) PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J 48:380–389. doi:10.1111/j.1365-313X.2006.02882.x PubMedGoogle Scholar
  34. Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137. doi:10.1016/S0074-7696(07)56004-3 PubMedGoogle Scholar
  35. Geisler M, Murphy AS (2005) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102. doi:10.1016/j.febslet.2005.11.054 PubMedGoogle Scholar
  36. Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400. doi:10.1242/dev.00926 PubMedGoogle Scholar
  37. Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997. doi:10.1101/gad.905201 PubMedGoogle Scholar
  38. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693. doi:10.1105/tpc.106.043778 PubMedGoogle Scholar
  39. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376–1386. doi:10.1105/tpc.105.030841 PubMedGoogle Scholar
  40. Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351. doi:10.1105/tpc.004960 PubMedGoogle Scholar
  41. Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van Montagu M, Inzé D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 101:5146–5151. doi:10.1073/pnas.0308702101 PubMedGoogle Scholar
  42. Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168. doi:10.1105/tpc.107.050674 PubMedGoogle Scholar
  43. Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7:211–220. doi:10.1046/j.1365-313X.1995.7020211.x PubMedGoogle Scholar
  44. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087. doi:10.1105/tpc.106.045674 PubMedGoogle Scholar
  45. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396. doi:10.1105/tpc.105.030981 PubMedGoogle Scholar
  46. Ivanchenko MG, Coffeen WC, Lomax TL, Dubrovsky JG (2006) Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Plant J 46:436–447. doi:10.1111/j.1365-313X.2006.02702.x PubMedGoogle Scholar
  47. Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347. doi:10.1111/j.1365-313X.2008.03528.x PubMedGoogle Scholar
  48. Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478. doi:10.1093/pcp/pcf077 PubMedGoogle Scholar
  49. Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miège C, Gaude T (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070. doi:10.1016/j.cell.2007.08.040 PubMedGoogle Scholar
  50. Kepinski S, Leyser O (2005) The Arabidopsis TIR1 protein is an auxin receptor. Nature 435:446–451. doi:10.1038/nature03542 PubMedGoogle Scholar
  51. Kuderová A, Urbánková I, Válková M, Malbeck J, Brzobohaty B, Némethová D, Hejátko J (2008) Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol 49:570–582. doi:10.1093/pcp/pcn029 PubMedGoogle Scholar
  52. Kurup S, Runions J, Köhler U, Laplaze L, Hodge S, Haseloff J (2005) Marking cell lineages in living tissues. Plant J 42:444–453. doi:10.1111/j.1365-313X.2005.02386.x PubMedGoogle Scholar
  53. Laplaze L, Benková E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900. doi:10.1105/tpc.107.055863 PubMedGoogle Scholar
  54. Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310PubMedGoogle Scholar
  55. Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753. doi:10.1105/tpc.105.034397 PubMedGoogle Scholar
  56. Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123. doi:10.1093/pcp/pcj082 PubMedGoogle Scholar
  57. Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56. doi:10.1111/j.1365-313X.2005.02434.x PubMedGoogle Scholar
  58. Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. doi:10.1016/S1369-5266(03)00035-9 PubMedGoogle Scholar
  59. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214. doi:10.1111/j.1365-313X.2004.02038.x PubMedGoogle Scholar
  60. Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66. doi:10.1093/jxb/erm171 PubMedGoogle Scholar
  61. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77. doi:10.1111/j.1365-3040.2005.01306.x PubMedGoogle Scholar
  62. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  63. Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597. doi:10.1105/tpc.010354 PubMedGoogle Scholar
  64. Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018. doi:10.1105/tpc.105.035451 PubMedGoogle Scholar
  65. Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15:2979–2991. doi:10.1105/tpc.017046 PubMedGoogle Scholar
  66. Morris DA, Friml J, Zazímalová E (2004) The transport of auxins. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 437–470Google Scholar
  67. Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097. doi:10.1038/nature06943 PubMedGoogle Scholar
  68. Nakamoto D, Ikeura A, Asami T, Yamamoto KT (2006) Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the arabidopsis mutant nonphototropic hypocotyl 4. Plant Physiol 141:456–464. doi:10.1104/pp.105.076273 PubMedGoogle Scholar
  69. Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853. doi:10.1104/pp.103.030031 PubMedGoogle Scholar
  70. Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S (2006) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205. doi:10.1111/j.1365-313X.2005.02582.x PubMedGoogle Scholar
  71. Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187. doi:10.1111/j.1365-313X.2008.03495.x PubMedGoogle Scholar
  72. Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614. doi:10.1111/j.1469-8137.2008.02472.x PubMedGoogle Scholar
  73. Nodzon LA, Xu WH, Wang Y, Pi LY, Chakrabarty PK, Song WY (2004) The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J 40:996–1006. doi:10.1111/j.1365-313X.2004.02266.x PubMedGoogle Scholar
  74. Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044. doi:10.1073/pnas.0402504101 PubMedGoogle Scholar
  75. Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224:133–144. doi:10.1007/s00425-005-0202-z PubMedGoogle Scholar
  76. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463. doi:10.1105/tpc.104.028316 PubMedGoogle Scholar
  77. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130. doi:10.1105/tpc.106.047761 PubMedGoogle Scholar
  78. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113. doi:10.1146/annurev.arplant.58.032806.104006 PubMedGoogle Scholar
  79. Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256. doi:10.1038/nature03633 PubMedGoogle Scholar
  80. Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162:507–515. doi:10.1016/j.jplph.2004.08.007 PubMedGoogle Scholar
  81. Reed RC, Brady SR, Muday GR (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378. doi:10.1104/pp.118.4.1369 PubMedGoogle Scholar
  82. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54. doi:10.1105/tpc.105.037796 PubMedGoogle Scholar
  83. Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480PubMedGoogle Scholar
  84. Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757PubMedGoogle Scholar
  85. Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579:5399–5406. doi:10.1016/j.febslet.2005.08.061 PubMedGoogle Scholar
  86. Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453. doi:10.1105/tpc.107.050963 PubMedGoogle Scholar
  87. Shuai B, Reynaga-Pena CG, Springer PS (2002) The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761. doi:10.1104/pp.010926 PubMedGoogle Scholar
  88. Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662. doi:10.1046/j.1365-313x.2001.01185.x PubMedGoogle Scholar
  89. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318. doi:10.1126/science.286.5438.316 PubMedGoogle Scholar
  90. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242. doi:10.1105/tpc.105.033365 PubMedGoogle Scholar
  91. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185. doi:10.1105/tpc.107.052068 PubMedGoogle Scholar
  92. Strader LC, Monroe-Augustus M, Bartel B (2008) The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation. BMC Plant Biol 8:41. doi:10.1186/1471-2229-8-41 PubMedGoogle Scholar
  93. Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954. doi:10.1038/ncb1754 PubMedGoogle Scholar
  94. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 31:1384–1386. doi:10.1126/science.1151461 Google Scholar
  95. Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659. doi:10.1111/j.1365-313X.2007.03075.x PubMedGoogle Scholar
  96. Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393. doi:10.1105/tpc.018630 PubMedGoogle Scholar
  97. Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939. doi:10.1105/tpc.105.035816 PubMedGoogle Scholar
  98. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721PubMedGoogle Scholar
  99. To JP, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671. doi:10.1105/tpc.018978 PubMedGoogle Scholar
  100. Uehara T, Okushima Y, Mimura T, Tasaka M, Fukaki H (2008) Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol 49:1025–1038. doi:10.1093/pcp/pcn079 PubMedGoogle Scholar
  101. Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050. doi:10.1105/tpc.105.035493 PubMedGoogle Scholar
  102. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492. doi:10.1073/pnas.171304098 PubMedGoogle Scholar
  103. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550. doi:10.1105/tpc.014928 PubMedGoogle Scholar
  104. Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed J (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130. doi:10.1111/j.1365-313X.2005.02432.x PubMedGoogle Scholar
  105. Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383. doi:10.1007/BF00633843 PubMedGoogle Scholar
  106. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735. doi:10.1093/aob/mci083 Google Scholar
  107. Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036. doi:10.1101/gad.852200 PubMedGoogle Scholar
  108. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170. doi:10.1038/nature00998 PubMedGoogle Scholar
  109. Yamamoto M, Yamamoto KT (1999) Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4. J Plant Res 112:391–396. doi:10.1007/PL00013892 PubMedGoogle Scholar
  110. Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J 40:772–782. doi:10.1111/j.1365-313X.2004.02254.x PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations