Plant Molecular Biology

, 69:375 | Cite as

Cross-regulatory mechanisms in hormone signaling

  • Kavitha T. Kuppusamy
  • Cristina L. Walcher
  • Jennifer L. Nemhauser


Recent studies suggest that hormones act through a web of interacting responses rather than through isolated linear pathways. This signal integration architecture may be one mechanism for increasing the specificity of outcomes in different cellular contexts. Several common themes for cross-regulation between pathways can be observed. Here, we propose a classification scheme for different levels of signaling pathway cross-regulation. This scheme is based on which parts of the individual pathways are acting as information conduits between pathways. Examples from the recent plant hormone biology literature are used to illustrate the different modes of interaction.


Cross-regulation Cross-talk Plant hormones Auxin Brassinosteroids Gibberellins Ethylene Jasmonates Abscisic acid 



This work was supported by the University of Washington. CW is a trainee on the Developmental Biology Predoctoral Training Grant T32HD007183 from the National Institute of Child Health and Human Development.


  1. Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825. doi: 10.1105/tpc.015685 PubMedCrossRefGoogle Scholar
  2. Alabadi D, Gallego-Bartolome J, Orlando L, Garcia-Carcel L, Rubio V, Martinez C et al (2008) Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53:324–335. doi: 10.1111/j.1365-313X.2007.03346.x PubMedCrossRefGoogle Scholar
  3. Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004a) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631. doi: 10.1104/pp.103.036897 PubMedCrossRefGoogle Scholar
  4. Bao MZ, Schwartz MA, Cantin GT, Yates JR 3rd, Madhani HD (2004b) Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell 119:991–1000. doi: 10.1016/j.cell.2004.11.052 PubMedCrossRefGoogle Scholar
  5. Bardwell L, Zou X, Nie Q, Komarova NL (2007) Mathematical models of specificity in cell signaling. Biophys J 92:3425–3441. doi: 10.1529/biophysj.106.090084 PubMedCrossRefGoogle Scholar
  6. Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563. doi: 10.1016/j.cub.2006.01.058 PubMedCrossRefGoogle Scholar
  7. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32. doi: 10.1046/j.1365-313x.2002.01191.x PubMedCrossRefGoogle Scholar
  8. Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521PubMedCrossRefGoogle Scholar
  9. Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW et al (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500. doi: 10.1073/pnas.0710778105 PubMedCrossRefGoogle Scholar
  10. Chou S, Huang L, Liu H (2004) Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell 119:981–990. doi: 10.1016/j.cell.2004.11.053 PubMedCrossRefGoogle Scholar
  11. Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23. doi: 10.1111/j.1469-8137.1993.tb03795.x PubMedCrossRefGoogle Scholar
  12. de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S et al (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484. doi: 10.1038/nature06520 PubMedCrossRefGoogle Scholar
  13. Dello Ioio R, Linhares FS, Sabatini S (2008) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11:23–27. doi: 10.1016/j.pbi.2007.10.006 PubMedCrossRefGoogle Scholar
  14. Elion EA, Qi M, Chen W (2005) Signal transduction. Signaling specificity in yeast. Science 307:687–688. doi: 10.1126/science.1109500 PubMedCrossRefGoogle Scholar
  15. Fang Y, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68. doi: 10.1104/pp.116.1.53 PubMedCrossRefGoogle Scholar
  16. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F et al (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479. doi: 10.1038/nature06448 PubMedCrossRefGoogle Scholar
  17. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743. doi: 10.1038/nature01387 PubMedCrossRefGoogle Scholar
  18. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693. doi: 10.1105/tpc.106.043778 PubMedCrossRefGoogle Scholar
  19. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460. doi: 10.1016/j.pbi.2007.08.014 PubMedCrossRefGoogle Scholar
  20. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615. doi: 10.1101/gad.229402 PubMedCrossRefGoogle Scholar
  21. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411. doi: 10.1093/emboj/17.5.1405 PubMedCrossRefGoogle Scholar
  22. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB et al (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100. doi: 10.1242/dev.00925 PubMedCrossRefGoogle Scholar
  23. Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86:1244–1248. doi: 10.1073/pnas.86.4.1244 PubMedCrossRefGoogle Scholar
  24. Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev 8:217–230CrossRefGoogle Scholar
  25. Komarova NL, Zou X, Nie Q, Bardwell L (2005) A theoretical framework for specificity in cell signaling. Mol Syst Biol 1:2005.0023Google Scholar
  26. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331. doi: 10.1016/S1369-5266(02)00275-3 PubMedCrossRefGoogle Scholar
  27. Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125:519–522. doi: 10.1104/pp.125.2.519 PubMedCrossRefGoogle Scholar
  28. Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204. doi: 10.1016/j.devcel.2004.07.002 PubMedCrossRefGoogle Scholar
  29. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214. doi: 10.1111/j.1365-313X.2004.02038.x PubMedCrossRefGoogle Scholar
  30. Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK (2002) Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129:2797–2806PubMedGoogle Scholar
  31. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523PubMedCrossRefGoogle Scholar
  32. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178. doi: 10.1105/tpc.007468 PubMedCrossRefGoogle Scholar
  33. Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34. doi: 10.1046/j.1365-313X.1998.00090.x PubMedCrossRefGoogle Scholar
  34. Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461. doi: 10.1038/nature05130 PubMedCrossRefGoogle Scholar
  35. Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097. doi: 10.1038/nature06943 PubMedCrossRefGoogle Scholar
  36. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP et al (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655. doi: 10.1016/j.cub.2008.03.060 PubMedCrossRefGoogle Scholar
  37. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475. doi: 10.1016/j.cell.2006.05.050 PubMedCrossRefGoogle Scholar
  38. Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K et al (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044. doi: 10.1073/pnas.0402504101 PubMedCrossRefGoogle Scholar
  39. Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008. doi: 10.1104/pp.015677 PubMedCrossRefGoogle Scholar
  40. Prayitno J, Rolfe BG, Mathesius U (2006) The Ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180. doi: 10.1104/pp.106.080093 PubMedCrossRefGoogle Scholar
  41. Rayle DL, Cleland R (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253PubMedCrossRefGoogle Scholar
  42. Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294. doi: 10.1038/nature04373 PubMedCrossRefGoogle Scholar
  43. Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J et al (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212. doi: 10.1105/tpc.107.052126 PubMedCrossRefGoogle Scholar
  44. Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822. doi: 10.1007/s11103-005-8102-y PubMedCrossRefGoogle Scholar
  45. Schwechheimer C (2008) Understanding gibberellic acid signaling—are we there yet? Curr Opin Plant Biol 11:9–15. doi: 10.1016/j.pbi.2007.10.011 PubMedCrossRefGoogle Scholar
  46. Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet 2:e202 10.1371/journal.pgen.0020202PubMedCrossRefGoogle Scholar
  47. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185. doi: 10.1105/tpc.107.052068 PubMedCrossRefGoogle Scholar
  48. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196. doi: 10.1105/tpc.107.052100 PubMedCrossRefGoogle Scholar
  49. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386. doi: 10.1126/science.1151461 PubMedCrossRefGoogle Scholar
  50. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S et al (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107. doi: 10.1126/science.1132397 PubMedCrossRefGoogle Scholar
  51. van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol 140:1494–1506. doi: 10.1104/pp.105.075879 PubMedCrossRefGoogle Scholar
  52. Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168. doi: 10.1016/j.tplants.2007.03.006 PubMedCrossRefGoogle Scholar
  53. Wang TW, Cosgrove DJ, Arteca RN (1993) Brassinosteroid stimulation of hypocotyl elongation and wall relaxation in Pakchoi (Brassica chinensis cv Lei-Choi). Plant Physiol 101:965–968PubMedGoogle Scholar
  54. Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M et al (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885. doi: 10.1038/sj.emboj.7600659 PubMedCrossRefGoogle Scholar
  55. Wu C, Dickstein R, Cary AJ, Norris JH (1996) The auxin transport inhibitor N-(1-Naphthyl)phthalamic acid elicits pseudonodules on nonnodulating mutants of white sweetclover. Plant Physiol 110:501–510PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kavitha T. Kuppusamy
    • 1
  • Cristina L. Walcher
    • 1
  • Jennifer L. Nemhauser
    • 1
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations