Plant Molecular Biology

, Volume 68, Issue 4–5, pp 493–503 | Cite as

Towards engineering increased pantothenate (vitamin B5) levels in plants

  • Ereck Chakauya
  • Katy M. Coxon
  • Ma Wei
  • Mary V. MacDonald
  • Tina Barsby
  • Chris Abell
  • Alison G. Smith


Pantothenate (vitamin B5) is the precursor of the 4′-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), l-aspartate-α-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5–2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.


Pantothenate Genetic engineering E. coli pan genes Transgenic oilseed rape 





Adenosine monophosphate






Ketopantoate hydroxymethyltransferase


Ketopantoate reductase




Pantothenate synthetase



We are grateful for funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) and EU FPV (HPRN-CT-2002-00244). E.C. was in receipt of a studentship from the Cambridge Commonwealth Trust through Sidney Sussex College.


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  2. Chakauya E, Coxon KM, Whitney HM, Ashurst JL, Abell C, Smith AG (2006) Pantothenate biosynthesis in higher plants: advances and challenges. Physiol Plant 126:319–329. doi: 10.1111/j.1399-3054.2006.00683.x CrossRefGoogle Scholar
  3. Chassagnole C, Diano A, Letisse F, Lindley ND (2003) Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation. J Biotechnol 104:261–272. doi: 10.1016/S0168-1656(03)00146-9 PubMedCrossRefGoogle Scholar
  4. Choudhry A, Mandichak TL, Broskey JP, Egolf RW, Kinsland C, Begley TP et al (2003) Inhibitors of pantothenate kinase: novel antibiotics for staphylococcal infections. Antimicrob Agents Chemother 47:2051–2055. doi: 10.1128/AAC.47.6.2051-2055.2003 PubMedCrossRefGoogle Scholar
  5. Coxon MK, Chakauya E, Ottenhof HH, Whitney HM, Blundell TL, Abell C et al (2005) Pantothenate biosynthesis in higher plants. Biochem Soc Trans 33:743–746. doi: 10.1042/BST0330743 PubMedCrossRefGoogle Scholar
  6. Cronan JE Jr, Littel KJ, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149:916–922PubMedGoogle Scholar
  7. von Delft F, Lewendon A, Dhanaraj V, Blundell TL, Abell C, Smith AG (2001) The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidylyltransferase superfamily. Structure 9:439–450. doi: 10.1016/S0969-2126(01)00604-9 CrossRefGoogle Scholar
  8. von Delft F, Inoue T, Saldanha SA, Ottenhof HH, Schmitzberger F, Birch LM et al (2003) Structure of E. coli ketopantoate hydroxymethyl transferase complexed with ketopantoate and Mg2+, solved by locating 160 selenomethionine sites. Structure 11:985–996. doi: 10.1016/S0969-2126(03)00158-8 CrossRefGoogle Scholar
  9. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. doi: 10.1007/BF02712670 CrossRefGoogle Scholar
  10. Elborough EM, Simon JW, Swinhoc R, Ashton AR, Slabas AR (1994) Studies on wheat acetyl CoA carboxylase and the cloning of a partial cDNA. Plant Mol Biol 24:21–34. doi: 10.1007/BF00040571 PubMedCrossRefGoogle Scholar
  11. Fouad WM, Rathinasabapathi B (2006) Expression of bacterial l-aspartate-α-decarboxylase in tobacco increases β-alanine and pantothenate levels and improves thermotolerance. Plant Mol Biol 60:495–505. doi: 10.1007/s11103-005-4844-9 PubMedCrossRefGoogle Scholar
  12. Genschel U, Powell CA, Abell C, Smith AG (1999) The final step of the pantothenate biosynthesis in higher plants: cloning and characterisation of the Pantothenate synthetase from Lotus japonicus and Oryza sativum (rice). Biochem J 341:669–678. doi: 10.1042/0264-6021:3410669 PubMedCrossRefGoogle Scholar
  13. Guerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy RRD (ed) Plant molecular biology, Labfax manual. BIOS Scientific, Oxford, pp 121–148Google Scholar
  14. Hellens R, Anne Edwards E, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832PubMedCrossRefGoogle Scholar
  15. Jackowski S, Alix JH (1990) Cloning, sequence, and expression of the pantothenate permease (panF) gene of Escherichia coli. J Bacteriol 172:3842–3848PubMedGoogle Scholar
  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions;-glucuronidase as a sensitive and versatile gene. EMBO J 6:3901–3907PubMedGoogle Scholar
  17. Jonczyk R, Ronconi S, Rychlik M, Genschel U (2008) Pantothenate synthetase is essential but not limiting for pantothenate biosynthesis in Arabidopsis. Plant Mol Biol 66:1–14. doi: 10.1007/s11103-007-9248-6 PubMedCrossRefGoogle Scholar
  18. Jones CE, Brook JM, Buck D, Abell C, Smith AG (1993) Cloning and sequencing of the Escherichia coli panB gene which encodes ketopantoate hydroxymethyltransferase, and overproduction of the enzyme. J Bacteriol 175:2125–2130PubMedGoogle Scholar
  19. Jones EC, Dancer JE, Smith AG, Abell C (1994) Evidence of the pathway to pantothenate in plants. Can J Chem 72:261–263Google Scholar
  20. Kallberg Y, Oppermann U, Jornvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem 269:4409–4417. doi: 10.1046/j.1432-1033.2002.03130.x PubMedCrossRefGoogle Scholar
  21. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302. doi: 10.1126/science.236.4806.1299 PubMedCrossRefGoogle Scholar
  22. Kleinkauf H (2000) The role of 4′-phosphopantetheine in the biosynthesis of fatty acids, polyketides and peptides. Biofactors 11:91–92PubMedGoogle Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  24. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi: 10.1007/BF02342540 CrossRefGoogle Scholar
  25. Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–505. doi: 10.2174/1389202023350255 CrossRefGoogle Scholar
  26. Lobley C, Schmitzberger F, Kilkenny ML, Whitney H, Ottenhof HH, Chakauya E et al (2003) Structural insights into the evolution of the pantothenate-biosynthesis pathway. Biochem Soc Trans 31:563–571. doi: 10.1042/BST0310563 PubMedCrossRefGoogle Scholar
  27. Millar A, Smith MA, Kunst L (2000) All fatty acids are not equal: discrimination in plant membrane lipids. Trends Plant Sci 5:95–101. doi: 10.1016/S1360-1385(00)01566-1 PubMedCrossRefGoogle Scholar
  28. Miyatake K, Nakano Y, Kitaoka S (1979) Pantothenate synthetase from Escherichia coli. [d-pantoate: beta-alanine ligase (AMP-forming)]. Methods Enzymol 62:215–219. doi:  10.1016/0076-6879(79)62221-8
  29. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242. doi: 10.1007/BF00778542 CrossRefGoogle Scholar
  30. Murphy DJ (2006) Molecular breeding strategies for the modification of lipid composition. In Vitro Cell Dev Biol Plant 42:89–99. doi: 10.1079/IVP2005734 Google Scholar
  31. Ottenhof HH, Ashurst JL, Whitney HM, Saldanha SA, Schmitzberger F, Gweon HS et al (2004) Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. Plant J 37:61–72. doi: 10.1046/j.1365-313X.2003.01940.x PubMedCrossRefGoogle Scholar
  32. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250. doi: 10.1128/AEM.68.5.2246-2250.2002 PubMedCrossRefGoogle Scholar
  33. Ramjee MK, Genschel U, Abell C, Smith AG (1997) Escherichia coli l-aspartate-alpha-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 323:661–669PubMedGoogle Scholar
  34. Rychlik M (2000) Quantification of free and bound pantothenic acid in foods and blood plasma by Stable Isotope Dilution assay. J Agric Food Chem 48:1175–1181. doi: 10.1021/jf9913054 PubMedCrossRefGoogle Scholar
  35. Sahm H, Eggeling L (1999) d-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl Environ Microbiol 65:1973–1979PubMedGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK et al (2002) Isolation, characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332. doi: 10.1104/pp.010747 PubMedCrossRefGoogle Scholar
  38. Shimizu S, Yamada H (1992) Enzymatic synthesis of chiral intermediates for d-pantothenate synthesis. Opportunities of industrial enzymes. Bernard Wolnak and Associates, Chicago, ILGoogle Scholar
  39. Shimizu S, Kataoka M, Chung MCM, Yamada H (1988) Ketopantoic acid reductase of Pseudomonas maltophilus 845—purification, characterisation, and role in pantothenate biosynthesis. J Biol Chem 263:12077–12084PubMedGoogle Scholar
  40. Singh DP, Cornah JE, Hadingham S, Smith AG (2002) Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol Biol 50:773–788. doi: 10.1023/A:1019959224271 PubMedCrossRefGoogle Scholar
  41. Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091. doi: 10.1073/pnas.92.18.8089 PubMedCrossRefGoogle Scholar
  42. Sweetman JP, Chu C, Qu N, Greenland AJ, Sonnewald U, Jepson I (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol 129:943–948. doi: 10.1104/pp.010937 American Society of Plant BiologistsPubMedCrossRefGoogle Scholar
  43. Teller JH, Powers SG, Snell EE (1976) Ketopantoate hydroxymethyltransferase. Part 1. Purification and role in pantothenate biosynthesis. J Biol Chem 251:3780–3785PubMedGoogle Scholar
  44. USDA (2008) National nutrient database for standard Reference, Release 18. ( Last Accessed 14 January 2008
  45. Vadamme EJ (1992) Production of vitamins, coenzymes, and related biochemicals by biotechnological processes. J Chem Technol Biotechnol 53:313–327Google Scholar
  46. Vorwoerd TC, Dekker BMM, Hoekemma A (1989) A small scale procedure for rapid isolation of plant RNAs. Nucleic Acids Res 17:2362–2362. doi: 10.1093/nar/17.6.2362 CrossRefGoogle Scholar
  47. Walsh TA, Green SB, Larrinua IM, Schmitzer PR (2001) Characterisation of plant beta-ureidopropionase and functional overexpression in Escherichia coli. Plant Physiol 125:1001–1011. doi: 10.1104/pp.125.2.1001 PubMedCrossRefGoogle Scholar
  48. White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276:10794–10800. doi: 10.1074/jbc.M009804200 PubMedCrossRefGoogle Scholar
  49. Wyse BW, Song WO, Walsh JH, Hansen RG (1985) Pantothenic acid. In: August J, Klein BP, Becker D, Venugopal PB (eds) Methods in vitamin assay. Wiley-Interscience Publication, New York, pp 399–416Google Scholar
  50. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305. doi: 10.1126/science.287.5451.303 PubMedCrossRefGoogle Scholar
  51. Zhang Y, Frank MW, Virga KG, Lee E, Rock CO, Jackowski S (2004) Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites. J Biol Chem 279:50969–50975. doi: 10.1074/jbc.M409607200 PubMedCrossRefGoogle Scholar
  52. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi: 10.1104/pp.104.046367 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ereck Chakauya
    • 1
    • 2
  • Katy M. Coxon
    • 1
  • Ma Wei
    • 3
  • Mary V. MacDonald
    • 4
  • Tina Barsby
    • 4
  • Chris Abell
    • 5
  • Alison G. Smith
    • 1
  1. 1.Department of Plant SciencesUniversity of CambridgeCambridgeUK
  2. 2.CSIR BiosciencesPretoriaSouth Africa
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina
  4. 4.Biogemma Ltd.Cambridge Science ParkCambridgeUK
  5. 5.University Chemical LaboratoryCambridgeUK

Personalised recommendations