Plant Molecular Biology

, Volume 68, Issue 3, pp 239–250 | Cite as

ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice

  • Song Yan
  • Chang-Jie Yan
  • Xiu-Hong Zeng
  • Ya-Chun Yang
  • Yu-Wei Fang
  • Chun-Yan Tian
  • Ya-Wei Sun
  • Zhu-Kuan Cheng
  • Ming-Hong Gu


Leaves, the collective organ produced by the shoot apical meristem (SAM), are polarized along their adaxial–abaxial axis. In this study, we characterized two rice (Oryza sativa) allelic rolled-leaf mutants, rolled leaf 9-1 (rl9-1) and rl9-2, which display very similar phenotypes with completely adaxialized leaves and malformed spikelets. We cloned the RL9 gene by way of a map-based cloning strategy. Molecular studies have revealed that RL9 encodes a GARP protein, an orthologue of Arabidopsis KANADIs. RL9 is mainly expressed in roots, leaves, and flowers. The transient expression of a RL9–GFP (green fluorescent protein) fusion protein has indicated that RL9 protein is localized in the nucleus, suggesting that RL9 acts as a putative transcription factor.


OryzaSativa L. Rolled leaf KANADI RL9 



We are grateful to Dr. Liu Qiaoquan (Agricultural College of Yangzhou University) for kindly providing the rl9-2 mutant. This research was supported in part by grants from the Ministry of Science and Technology of China (No. 2005CB120804), the Jiangsu Innovation Talent Project (No. BK2006506) and the Postgraduate Science Innovation Plan of Jiangsu Province.

Supplementary material

11103_2008_9365_MOESM1_ESM.doc (54 kb)
(DOC 54 kb)


  1. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221. doi: 10.1016/j.cell.2005.04.004 PubMedCrossRefGoogle Scholar
  2. Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis Class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662. doi: 10.1016/j.devcel.2004.10.003 PubMedCrossRefGoogle Scholar
  3. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A et al (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971. doi: 10.1038/35050091 PubMedCrossRefGoogle Scholar
  4. Chen ZX, Pan XB, Hu J (2001) Relationship between rolled leaf and ideal plant type of rice (Oryza sativa L.). J Jiangsu Agric Res 22:88–91Google Scholar
  5. Chen ZX, Chen G, Pan XB (2002) Genetic expression and effects of rolled leaf gene RL(t) in hybrid rice (Oryza sativa L.). Acta Agronomica Sin 6:847–851Google Scholar
  6. Dai MQ, Hu YF, Zhao Y, Liu HF, Zhou DX (2007a) A WUSCHEL-LIKE HOMEOBOX gene represse a YABBY gene expression required for rice leaf development. Plant Physiol 144:380–390. doi: 10.1104/pp.107.095737 PubMedCrossRefGoogle Scholar
  7. Dai MQ, Zhao Y, Ma Q, Hu YF, Hedden P, Zhang QF (2007b) The rice YABBY1 gene is involved in the feedback regulation of Gibberellin metabolism. Plant Physiol 144:121–133. doi: 10.1104/pp.107.096586 PubMedCrossRefGoogle Scholar
  8. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774. doi: 10.1016/j.cub.2003.09.035 PubMedCrossRefGoogle Scholar
  9. Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199–209. doi: 10.1016/S0092-8674(00)81651-7 PubMedCrossRefGoogle Scholar
  10. Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260. doi: 10.1016/S0960-9822(01)00392-X PubMedCrossRefGoogle Scholar
  11. Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004) Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131:2997–3006. doi: 10.1242/dev.01186 PubMedCrossRefGoogle Scholar
  12. Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727. doi: 10.1046/j.1365-313X.2002.01390.x PubMedCrossRefGoogle Scholar
  13. Hawker NP, Bowman JL (2004) Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:1–10. doi: 10.1104/pp.104.040196 CrossRefGoogle Scholar
  14. Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H et al (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14:2015–2029. doi: 10.1105/tpc.002733 PubMedCrossRefGoogle Scholar
  15. Huang W, Pi L, Liang W, Xu B, Wang H, Cai R et al (2006) The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell 18:2479–2492. doi: 10.1105/tpc.106.045013 PubMedCrossRefGoogle Scholar
  16. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389. doi: 10.1038/35096500 PubMedCrossRefGoogle Scholar
  17. Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H et al (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:5467–5478. doi: 10.1093/pcp/pcf077 CrossRefGoogle Scholar
  18. Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G (2004) Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol 56:133–143. doi: 10.1007/s11103-004-2648-y PubMedCrossRefGoogle Scholar
  19. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405. doi: 10.1016/S0968-0004(98)01285-7 PubMedCrossRefGoogle Scholar
  20. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004a) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi: 10.1038/nature02363 PubMedCrossRefGoogle Scholar
  21. Juarez MT, Twigg RW, Timmermans MC (2004b) Specification of adaxial cell fate during maize leaf development. Development 131:4533–4544. doi: 10.1242/dev.01328 PubMedCrossRefGoogle Scholar
  22. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709. doi: 10.1038/35079629 PubMedCrossRefGoogle Scholar
  23. Kidner CA, Timmermans MCP (2007) Mixing and matching pathways in leaf polarity. Curr Opin Plant Biol 10:13–20. doi: 10.1016/j.pbi.2006.11.013 PubMedCrossRefGoogle Scholar
  24. Lang YZ, Zhang ZJ, Gu XY, Yang JC, Zhu QS (2004a) Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) I Leaf orientation, canopy structure and light distribution. Acta Agronomica Sin 30:806–810Google Scholar
  25. Lang YZ, Zhang ZJ, Gu XY, Yang JC, Zhu QS (2004b) Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) II Photosynthetic character, dry mass production and yield forming. Acta Agronomica Sin 30:883–887Google Scholar
  26. Lin WC, Shuai B, Springer PS (2003) The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial–abaxial patterning. Plant Cell 15:2241–2252. doi: 10.1105/tpc.014969 PubMedCrossRefGoogle Scholar
  27. Liu HL, Xu YY, Xu ZH, Chong K (2007) A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol 217:629–637. doi: 10.1007/s00427-007-0173-0 PubMedCrossRefGoogle Scholar
  28. McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ et al (2006) ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant J 46:522–531. doi: 10.1111/j.1365-313X.2006.02717.x PubMedCrossRefGoogle Scholar
  29. McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942PubMedGoogle Scholar
  30. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713. doi: 10.1038/35079635 PubMedCrossRefGoogle Scholar
  31. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910. doi: 10.1105/tpc.105.034876 PubMedCrossRefGoogle Scholar
  32. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76. doi: 10.1105/tpc.104.026161 PubMedCrossRefGoogle Scholar
  33. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. doi: 10.1101/gad.1004402 PubMedCrossRefGoogle Scholar
  34. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520. doi: 10.1016/S0092-8674(02)00863-2 PubMedCrossRefGoogle Scholar
  35. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110. doi: 10.1126/science.290.5499.2105 PubMedCrossRefGoogle Scholar
  36. Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S et al (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521. doi: 10.1126/science.1065201 PubMedCrossRefGoogle Scholar
  37. Sakamoto A, Tanaka A, Watanabe H, Tano S (1998) Molecular cloning of Arabidopsis photolyase gene (PHR1) and characterization of its promoter region. DNA Seq 9:335–340. doi: 10.3109/10425179809008473 PubMedCrossRefGoogle Scholar
  38. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522. doi: 10.1101/gr.10.4.516 PubMedCrossRefGoogle Scholar
  39. Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E et al (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088. doi: 10.1101/gad.13.9.1079 PubMedCrossRefGoogle Scholar
  40. Shen FC (1983) Several opinions on how to use rolled leaf character of rice in breeding. Guizhou Agric Sci 5:6–8Google Scholar
  41. Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhang JL (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108. doi: 10.1007/s00425-006-0472-0 PubMedCrossRefGoogle Scholar
  42. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128PubMedGoogle Scholar
  43. Sun Y, Zhou Q, Zhang W, Fu Y, Huang H (2002) ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta 214:694–702. doi: 10.1007/s004250100673 PubMedCrossRefGoogle Scholar
  44. Sussex IM (1955) Morphogenesis in Solanum tuberosum L.: experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5:286–300Google Scholar
  45. Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121:2723–2735PubMedGoogle Scholar
  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  47. Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154Google Scholar
  48. Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708. doi: 10.1073/pnas.0504029102 PubMedCrossRefGoogle Scholar
  49. Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96:15336–15341. doi: 10.1073/pnas.96.26.15336 PubMedCrossRefGoogle Scholar
  50. Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y et al (2003) Novel as1 and as2 defects in leaf adaxial–abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–4107. doi: 10.1242/dev.00622 PubMedCrossRefGoogle Scholar
  51. Xu L, Yang L, Huang H (2007) Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation. Cell Res 17:512–519. doi: 10.1038/cr.2007.45 PubMedCrossRefGoogle Scholar
  52. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509. doi: 10.1105/tpc.018044 PubMedCrossRefGoogle Scholar
  53. Yan CJ, Yan S, Zhang ZQ, Liang GH, Lu JF, Gu MH (2006) Genetic analysis and gene fine mapping for a rice novel mutant (rl9 (t)) with rolling leaf character. Chin Sci Bull 51:163–169Google Scholar
  54. Yan CJ, Zhou JH, Yan S, Chen F, Yeboah M, Tang SZ et al (2007) Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115:1093–1100. doi: 10.1007/s00122-007-0635-9 PubMedCrossRefGoogle Scholar
  55. Yuan LP (1997) Super-high yield hybrid rice breeding. Hybrid Rice 12:1–6Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Song Yan
    • 1
  • Chang-Jie Yan
    • 1
  • Xiu-Hong Zeng
    • 1
  • Ya-Chun Yang
    • 1
  • Yu-Wei Fang
    • 1
  • Chun-Yan Tian
    • 1
  • Ya-Wei Sun
    • 1
  • Zhu-Kuan Cheng
    • 2
  • Ming-Hong Gu
    • 1
  1. 1.The Key Laboratory of Plant Functional Genomics, Ministry of Education of China, Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityJiangsuPeople’s Republic of China
  2. 2.Institute of Genetics and development biologyChinese Academy of ScienceBeijingChina

Personalised recommendations