Plant Molecular Biology

, Volume 67, Issue 1–2, pp 25–36 | Cite as

Arabidopsis thaliana contains a single gene encoding squalene synthase

  • Antoni Busquets
  • Verónica Keim
  • Marta Closa
  • Ana del Arco
  • Albert Boronat
  • Montserrat Arró
  • Albert FerrerEmail author


Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to produce squalene (SQ), the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. Arabidopsis thaliana contains two SQS-annotated genomic sequences, At4g34640 (SQS1) and At4g34650 (SQS2), organized in a tandem array. Here we report that the SQS1 gene is widely expressed in all tissues throughout plant development, whereas SQS2 is primarily expressed in the vascular tissue of leaf and cotyledon petioles, and the hypocotyl of seedlings. Neither the complete A. thaliana SQS2 protein nor the chimeric SQS resulting from the replacement of the 69 C-terminal residues of SQS2 by the 111 C-terminal residues of the Schizosaccharomyces pombe SQS were able to confer ergosterol prototrophy to a Saccharomyces cerevisiae erg9 mutant strain lacking SQS activity. A soluble form of SQS2 expressed in Escherichia coli and purified was unable to synthesize SQ from FPP in the presence of NADPH and either Mg2+ or Mn2+. These results demonstrated that SQS2 has no SQS activity, so that SQS1 is the only functional SQS in A. thaliana. Mutational studies revealed that the lack of SQS activity of SQS2 cannot be exclusively attributed to the presence of an unusual Ser replacing the highly conserved Phe at position 287. Expression of green fluorescent protein (GFP)-tagged versions of SQS1 in onion epidermal cells demonstrated that SQS1 is targeted to the endoplasmic reticulum (ER) membrane and that this location is exclusively dependent on the presence of the SQS1 C-terminal hydrophobic trans-membrane domain.


Erg9 Isoprenoid Mevalonate Plant Squalene Sterol 



Cauliflower mosaic virus




Discosoma red fluorescent protein


Endoplasmic reticulum


Farnesyl diphosphate


Green fluorescent protein




3-Hydroxy-3-methylglutaryl coenzyme A




Firefly luciferase


Mevalonic acid


Presqualene diphosphate


Squalene; SQS, squalene synthase



We wish to thank Francis Karst (INRA, Colmar, France) for yeast strain 2C1 and Paloma Mas (Consorci CSIC-IRTA, Barcelona, Spain) for plasmid pRTL2. This work was supported by grants from the Dirección General de Investigación of the Spanish Ministerio de Educación y Ciencia (BIO2003-1059 and BFU2006-0544 to A. Ferrer and BIO2006-03704 to A. Boronat, all of them including FEDER funds) and from the Direcció General de Recerca de la Generalitat de Catalunya (SGR−00914 to A. Boronat). A. Busquets and V. Keim are recipients of predoctoral fellowships from the Spanish Ministerio de Educación y Ciencia. We gratefully acknowledge the technical support and facilities of the Scientific and Technical Services of the University of Barcelona.


  1. Akamine S, Nakamori K, Chechetka SA, Banba M, Umehara Y, Kouchi H, Izui K, Hata S (2003) cDNA cloning, mRNA expression, and mutational analysis of the squalene synthase gene of Lotus japonicus. Biochim Biophys Acta 1626:97–101PubMedGoogle Scholar
  2. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30:123–128Google Scholar
  3. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci 316:1194–1199Google Scholar
  4. Becker D (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18:203PubMedCrossRefGoogle Scholar
  5. Brinkmann U, Mattes RE, Buckel P (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85:109–114PubMedCrossRefGoogle Scholar
  6. Carrington JC, Freed DD, Leinicke AJ (1991) Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell 3:953–962PubMedCrossRefGoogle Scholar
  7. Cunillera N, Boronat A, Ferrer A (2000) Spatial and temporal patterns of GUS expression directed by 5′ regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. Plant Mol Biol 44:745–758CrossRefGoogle Scholar
  8. D’Errico I, Gadaleta G, Saccone C (2004) Pseudogenes in metazoan: Origin and features. Brief Funct Genomic Proteomic 3:157–167PubMedCrossRefGoogle Scholar
  9. Devarenne TP, Shin DH, Back K, Yin S, Chappell J (1998) Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor. Arch Biochem Biophys 349:205–215PubMedCrossRefGoogle Scholar
  10. Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis in tobacco. Plant Physiol 129:1095–1106PubMedCrossRefGoogle Scholar
  11. Enjuto M, Lumbreras V, Marín C, Boronat A (1995) Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl Coenzyme A reductase, is restricted to meristematic and floral tissues. Plant Cell 7:517–527PubMedCrossRefGoogle Scholar
  12. Forés O, Arró M, Pahissa A, Ferrero S, Germann M, Stukey J, McDonough V, Nickels JT, Campos N, Ferrer A (2006) Arabidopsis thaliana expresses two functional isoforms of Arvp, a protein involved in the regulation of cellular lipid homeostasis. Biochim Biophys Acta 1761:725–735PubMedGoogle Scholar
  13. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acid Res 20:1425PubMedCrossRefGoogle Scholar
  14. Gu P, Ishii Y, Spencer TA, Shechter I (1998) Function-structure studies and identification of three enzyme domains involved in the catalytic activity in rat hepatic squalene synthase. J Biol Chem 273:12515–12525PubMedCrossRefGoogle Scholar
  15. Hayashi H, Hiraoka N, Ikeshiro Y, Kushiro T, Morita M, Shibuya M, Ebizuka Y (2000) Molecular cloning and characterization of a cDNA for Glycyrrhiza glabra cycloartenol synthase. Biol Pharm Bull 23:231–234PubMedGoogle Scholar
  16. Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev 14:1485–1497PubMedGoogle Scholar
  17. Jarsfter MB, Zhang DL, Poulter CD (2002) Recombinant squalene synthase. Synthesis of non-head-to-tail isoprenoids in the absence of NADPH. J Am Chem Soc 124:8834–8845CrossRefGoogle Scholar
  18. Kribii R, Arro M, Del Arco A, González V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase. Involvement of the C–terminal region of the enzyme in the channelling of squalene through the sterol pathway. Eur J Biochem 249:61–69PubMedCrossRefGoogle Scholar
  19. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719PubMedCrossRefGoogle Scholar
  20. Lee JH, Yoon YH, Kim HY, Shin DH, Kim DU, Lee IJ, Kim KU (2002) Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum L.). Mol Cells 13:436–443PubMedGoogle Scholar
  21. Lluch MA, Masferrer A, Arró M, Boronat A, Ferrer A (2000) Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Mol Biol 42:365–376PubMedCrossRefGoogle Scholar
  22. Manzano D, Busquets A, Closa M, Hoyerová K, Schaller H, Kamínek M, Arró M, Ferrer A (2006) Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers a light-dependent lesion formation and alters cytokinin homeostasis. Plant Mol Biol 61:195–213PubMedCrossRefGoogle Scholar
  23. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128PubMedCrossRefGoogle Scholar
  24. Nakashima T, Inoue T, Oka A, Nishino T, Osumi T, Hata S (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Proc Natl Acad Sci USA 92:2328–2332PubMedCrossRefGoogle Scholar
  25. Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449PubMedCrossRefGoogle Scholar
  26. Ortiz JA, Mallolas J, Nicot C, Bofarull J, Rodríguez JC, Hegardt FG, Haro D, Marrero P (1999) Isolation of pig mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase promoter: characterization of a peroxisome proliferator-responsive element. Biochem J 337:329–335PubMedCrossRefGoogle Scholar
  27. Pujol G, Ferrer A, Ariño J (1998) Protein phosphatase 2A and protein phosphatase X genes in Arabidopsis thaliana. In: Lutlow EJW (eds) Methods in molecular biology, vol 93. Humana Press, New Jersey pp 201–212Google Scholar
  28. Robinson GW, Tsay YH, Kienzle BK, Smith-Monroy CA, Bishop RW (1993) Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol 13:2706–2717PubMedGoogle Scholar
  29. Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877PubMedCrossRefGoogle Scholar
  30. Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048PubMedCrossRefGoogle Scholar
  31. Tafforeau L, Le Blastier S, Bamps S, Dewez M, Vandenhaute J, Hermand D (2006) Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. EMBO J 25:4547–4556PubMedCrossRefGoogle Scholar
  32. Tansey TR, Shechter I (2000) Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529:49–62PubMedGoogle Scholar
  33. Threlfall DR, Whitehead IM, (1988) Coordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry 27:2567–2580CrossRefGoogle Scholar
  34. Vögeli U, Chappell J (1988) Induction of sesquiterpene cyclase and induction of squalene syntethase activities in plant cell cultures treated with fungal elicitor. Plant Physiol 88:1291–1296PubMedCrossRefGoogle Scholar
  35. Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestants. Plant Cell Physiol 40:993–998PubMedGoogle Scholar
  36. Zimmermann P, Hennig L, Gruissem W (2005) Gene expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409PubMedCrossRefGoogle Scholar
  37. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator: Arabidopsis microarray database and analysis toolbox. Plant Physiology 136:2621–2632PubMedCrossRefGoogle Scholar
  38. Zook MN, Kuc JA (1991) Induction of sesquiterpene cyclase and suppression of squalene synthetase-activity in elicitor-treated or fungal-infected potato-tuber tissue. Physiol Mol Plant Pathol. 39:377–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Antoni Busquets
    • 1
  • Verónica Keim
    • 1
  • Marta Closa
    • 1
  • Ana del Arco
    • 2
  • Albert Boronat
    • 2
  • Montserrat Arró
    • 1
  • Albert Ferrer
    • 1
    Email author
  1. 1.Departament de Bioquímica i Biologia Molecular, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations