Plant Molecular Biology

, Volume 66, Issue 4, pp 429–443 | Cite as

Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.)

  • Ai-Li Li
  • Yuan-Fang Zhu
  • Xiao-Mei Tan
  • Xiang Wang
  • Bo Wei
  • Han-Zi Guo
  • Zeng-Lin Zhang
  • Xiao-Bo Chen
  • Guang-Yao Zhao
  • Xiu-Ying Kong
  • Ji-Zeng Jia
  • Long Mao
Article

Abstract

Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat–rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2–3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H2O2), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.

Keywords

CDPK Evolutionary Gene family Multiple stress responses Triticum aestivum L. 

Abbreviations

ABA

Abscisic acid

Bgt

Blumeria graminis tritici

CDPK

Calcium-dependent protein kinase

GA

Gibberellin

H2O2

Hydrogen peroxide

MYA

Million years ago

NLS

Nuclear localization signal

Supplementary material

References

  1. Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu C-Y, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628PubMedCrossRefGoogle Scholar
  2. Asano T, Tanaka N, Yang GX, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366PubMedCrossRefGoogle Scholar
  3. Botella JR, Arteca JM, Somodevilla M, Arteca RN (1996) Calcium dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol Biol 30:1129–1137PubMedCrossRefGoogle Scholar
  4. Camoni L, Harper JF, Palmgren MG (1998) 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430:381–384PubMedCrossRefGoogle Scholar
  5. Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485PubMedCrossRefGoogle Scholar
  6. Chico JM, Raices M, Tellez-Inon MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270PubMedCrossRefGoogle Scholar
  7. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinform 20:426–427CrossRefGoogle Scholar
  8. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866PubMedCrossRefGoogle Scholar
  9. Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670CrossRefGoogle Scholar
  10. Eddy SR (1998) Profile hidden markov models. Bioinform 14:755–763CrossRefGoogle Scholar
  11. Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. PNAS 91:8837–8841PubMedCrossRefGoogle Scholar
  12. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJA, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238PubMedCrossRefGoogle Scholar
  13. Frattini M, Morello L, Breviario D (1999) Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. Plant Mol Biol 41:753–764PubMedCrossRefGoogle Scholar
  14. Gargantini PR, Gonzalez-Rizzo S, Chinchilla D, Raices M, Giammaria V, Ulloa RM, Frugier F, Crespi MD (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J 48:843–856PubMedCrossRefGoogle Scholar
  15. Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. PNAS 93:10274–10279PubMedCrossRefGoogle Scholar
  16. Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytologist 151:175–183CrossRefGoogle Scholar
  17. Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566PubMedCrossRefGoogle Scholar
  18. Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calciumdependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954PubMedCrossRefGoogle Scholar
  19. Hernandez SC, Hardin SC, Clouse SD, Keiber JJ, Huber SC (2004) Identification of a new motif for CDPK. Phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428:81–91CrossRefGoogle Scholar
  20. Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680PubMedCrossRefGoogle Scholar
  21. Huang SX, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. PNAS 99:8133–8138Google Scholar
  22. Ishino T, Orito Y, Chinzei Y, Yuda M (2006) A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol 59:1175–1184PubMedCrossRefGoogle Scholar
  23. Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Plant Syst Evol 137:259–273CrossRefGoogle Scholar
  24. Kellogg EA (1998) Relationships of cereal crops and other grasses. PNAS 95:2005–2010PubMedCrossRefGoogle Scholar
  25. Klimecka M, Muszyńska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochimica Polonica 54:219–233PubMedGoogle Scholar
  26. Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M (2007) Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol Genet Genomics 277:713–723PubMedCrossRefGoogle Scholar
  27. Kumar S, Tamura K, Nei M (2004) MEG3: Integrated software for molecular evolution genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  28. Li WH (1997) Molecular evolution. Sinauer associates, Inc., SunderlandGoogle Scholar
  29. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400PubMedGoogle Scholar
  30. Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular marker among geographically diverse accessions of Triticum tauschii. Genome 34:354–361Google Scholar
  31. Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188PubMedCrossRefGoogle Scholar
  32. Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. PNAS 102:10736–10741PubMedCrossRefGoogle Scholar
  33. Martínez-Noël G, Nagaraj VJ, Calo G, Wiemken A, Pontis HG (2007) Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiol Biochem 45:410–419PubMedCrossRefGoogle Scholar
  34. McFadden ES, Sears ER (1946) The origin of triticum speleta and its free-threshing hexaploid relatives. J Hered 37:81–89Google Scholar
  35. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell s-type anion- and Ca2+-permeable channels and stomatal closure. PLOS Biology 4:1749–1762CrossRefGoogle Scholar
  36. Murillo I, Jaeck E, Cordero MJ, San Segundo. B (2001) Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol Biol 45:145–158PubMedCrossRefGoogle Scholar
  37. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  38. Patharkar OR, Cushman JC (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphyorylates a two-component pseudo-response regulator. Plant J 24:679–691PubMedCrossRefGoogle Scholar
  39. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712PubMedCrossRefGoogle Scholar
  40. Ramakrishna W, Dubcovsky J, Park Y-J, Busso C, Emberton J, SanMiguel P, Bennetzen JL (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400PubMedGoogle Scholar
  41. Ray S, Agarwal P, Arora R, Kapoor S, Tyagi A (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Gen Genet 278:493–505Google Scholar
  42. Reddy AS (2001) Calcium: silver bullet in signalling. Plant Sci 160:381–404PubMedCrossRefGoogle Scholar
  43. Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinase play an essential role in a plant defence response. EMBO J 20:5556–5567PubMedCrossRefGoogle Scholar
  44. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327PubMedCrossRefGoogle Scholar
  45. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  46. Sanders D, Pelloux J. Brownlee C, Harper JF (2002) Calcium at the crossroads of signalling. Plant Cell 14:S401–S417PubMedGoogle Scholar
  47. Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1905PubMedCrossRefGoogle Scholar
  48. Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304CrossRefGoogle Scholar
  49. Snedden WA, Fromm H (2001) The calcium and calmodulin signaling network in plants. New Phytologist 151:35–66CrossRefGoogle Scholar
  50. Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34 Web Server issue W609–W612Google Scholar
  51. Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, Harmon AC, Muszynska G (2005) A woundresponsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol 139:1970–1983PubMedCrossRefGoogle Scholar
  52. Szczegielniak J, Liwosz A, Jurkowski I, Loog M, Dobrowolska G, Ek P. Harmon AC, Muszyńska G (2000) Calcium-dependent protein kinase from maize seedlings activated by phospholipids. Eur J Biochem 267:3818–3827PubMedCrossRefGoogle Scholar
  53. Talbert LE, Clack TH (1991) Identification of D-genome chromosomes of chinese spring of Sourthern blots using gnome-specific repetative DNA. J Hered 82:509–512Google Scholar
  54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  55. Trewavas AJ, Malho R (1998) Ca2+ signaling in plant cells: the big network! Curr Opin Plant Biol 1:428–433PubMedCrossRefGoogle Scholar
  56. Tsai TM, Chen YR, Kao TW, Tsay WS, Wu CP, Huang DD, Chen WH, Chang CC, Huang HJ (2007) PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge. Plant Cell Rep 26:1899–1908Google Scholar
  57. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  58. Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet 244:331–340PubMedCrossRefGoogle Scholar
  59. Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189Google Scholar
  60. Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099PubMedCrossRefGoogle Scholar
  61. Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Data of the monocot–dicot divergence estimated from chloroplast DNA sequence data. PNAS 86:6201–6205Google Scholar
  62. Wong GKS, Wang J, Tao L, Tan J, Zhang JG, Passey DA, Yu J (2002) Compositional gradients in gramineae genes. Genome Res 12:851–856 PubMedCrossRefGoogle Scholar
  63. Yang G, Komatsu S (2001) Involvement of Calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol 41:1243–1250CrossRefGoogle Scholar
  64. Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  65. Yu XC, Zhu SY, Gao GF, Wang XJ, Zhao R, Zou KQ, Wang XF, Zhang XY, Wu FQ, Peng CC, Zhang DP (2007) Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol Biol 64:531–538PubMedCrossRefGoogle Scholar
  66. Zhang XQ, Chollet R (1997) Seryl-phosphorylation of soybean nodule sucrose synthase (nodulin-100) by a Ca2+-dependent protein kinase. FEBS Lett 410:126–130PubMedCrossRefGoogle Scholar
  67. Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ai-Li Li
    • 1
  • Yuan-Fang Zhu
    • 1
  • Xiao-Mei Tan
    • 1
    • 2
  • Xiang Wang
    • 1
  • Bo Wei
    • 1
  • Han-Zi Guo
    • 1
  • Zeng-Lin Zhang
    • 1
  • Xiao-Bo Chen
    • 1
  • Guang-Yao Zhao
    • 1
  • Xiu-Ying Kong
    • 1
  • Ji-Zeng Jia
    • 1
  • Long Mao
    • 1
    • 3
  1. 1.National Key Facility of Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Germplasm & BiotechnologyInstitute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS)BeijingP.R. China
  2. 2.Colleage of Life SciencesSichuan Agricultural UniversityYa-anP.R. China
  3. 3.Institute of Crop Sciences & National Key Facility for Crop Gene Resources and Genetic ImprovementChinese Academy of Agricultural SciencesBeijingP.R. China

Personalised recommendations