Plant Molecular Biology

, Volume 65, Issue 3, pp 285–294 | Cite as

Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development

  • Gundula A. Noll
  • Maria E. Fontanellaz
  • Boris Rüping
  • Ahmed Ashoub
  • Aart J. E. van Bel
  • Rainer Fischer
  • Michael Knoblauch
  • Dirk Prüfer
Article

Abstract

Forisomes are protein aggregates found uniquely in the sieve elements of Fabaceaen plants. Upon wounding they undergo a reversible, calcium-dependent conformational switch which enables them to act as cellular stopcocks. Forisomes begin to form in young sieve elements at an early stage of metaphloem differentiation. Genes encoding forisome components could therefore be useful as markers of early sieve element development. Here we present a comprehensive analysis of the developmental expression profile of for1, which encodes such a forisome component. The for1 gene is highly conserved among Fabaceaen species and appears to be unique to this phylogenetic lineage since no orthologous genes have been found in other plants, including Arabidopsis and rice. Even so, transgenic tobacco plants expressing reporter genes under the control of the for1 promoter display reporter activity exclusively in immature sieve elements. This suggests that the regulation of sieve element development is highly conserved even in plants where mature forisomes have not been detected. The promoter system could therefore provide a powerful tool for the detailed analysis of differentiation in metaphloem sieve elements in an unexpectedly broad range of plant species.

Keywords

Immature sieve elements Forisomes Metaphloem development Promoter analysis 

Abbreviations

CC

Companion cell

EST

Expressed sequence tag

GFP

Green fluorescent protein

GUS

β-Glucuronidase

RACE

Rapid amplification of cDNA ends

SE

Sieve element

Supplementary material

References

  1. Avery GS (1933) Structure and development of the tobacco leaf. Am J Bot 20:565–592CrossRefGoogle Scholar
  2. Behnke HD (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bulletin 12:143–175Google Scholar
  3. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12:8711–8721PubMedCrossRefGoogle Scholar
  4. Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Heliarutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–185 PubMedCrossRefGoogle Scholar
  5. Bonke M (2004) The roles of WOL and APL in phloem development in Arabidopsis thaliana roots. Dissertation, University of HelsinkiGoogle Scholar
  6. Brears T, Walker EL, Coruzzi GM (1991) A promoter sequence involved in cell-specific expression of the pea glutamine synthase GS3A gene in organs of transgenic tobacco and alfalfa. Plant J 1:325–244CrossRefGoogle Scholar
  7. Cronshaw J, Gilder J, Stone D (1973) Fine structural studies of P-protein in Cucurbita, Cucumis and Nicotiana. J Ultrastruct Res 45:192–205PubMedCrossRefGoogle Scholar
  8. Cronshaw J, Esau K (1968) P protein in the phloem of Cucurbita. J Cell Biol 38:25–39PubMedCrossRefGoogle Scholar
  9. Cronshaw J (1975) P-proteins. Plenum, New York, pp 79–115Google Scholar
  10. Cronshaw J (1981) Phloem structure and function. Ann Rev Plant Physiol 32:465–484CrossRefGoogle Scholar
  11. Cubitt AB, Woollenweber LA, Heim R (1999) Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58:19–30PubMedGoogle Scholar
  12. Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34:144–158PubMedCrossRefGoogle Scholar
  13. Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823PubMedCrossRefGoogle Scholar
  14. Guo H, Chen X, Zhang H, Fang R, Yuan Z, Zhang Z, Tian Y (2004) Characterization and activity enhancement of the phloem-specific pumpkin PP2 gene promoter. Transgenic Res 13:559–566PubMedCrossRefGoogle Scholar
  15. Haritatos E, Ayre BG, Turgeon R (2000) Identification of phloem involved in assimilate loading of leaves by the activity of the galactinol synthase promoter. Plant Physiol 123:929–937PubMedCrossRefGoogle Scholar
  16. Hehn A, Rohde W (1998) Characterization of cis-acting elements affecting strength and phloem specificity of the coconut foliar decay virus promoter. J Gen Virol 79:1495–1499PubMedGoogle Scholar
  17. Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad Sci USA 83:2571–2575PubMedCrossRefGoogle Scholar
  18. Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322PubMedCrossRefGoogle Scholar
  19. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  20. Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230PubMedCrossRefGoogle Scholar
  21. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nature Mater 2:600–603. Erratum in Nature Mater 4: 353CrossRefGoogle Scholar
  22. Lawton DM (1978) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11CrossRefGoogle Scholar
  23. Leiser RM, Ziegler-Graff V, Reutenauer A, Herrbach E, Lemaire O, Guilley A, Richards K, Jonard G (1992) Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc Natl Acad Sci USA 89:9136–9140 PubMedCrossRefGoogle Scholar
  24. Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426CrossRefGoogle Scholar
  25. Pyo H, Demura T, Fukuda H (2004) Spatial and temporal tracing of vessel differentiation in young Arabidopsis seedlings by the expression of an immature tracheary element-specific promoter. Plant Cell Physiol 45:1529–1536PubMedCrossRefGoogle Scholar
  26. Sabnis DD, Hart JW (1973) P-protein in sieve elements. Planta 109:127–133CrossRefGoogle Scholar
  27. Sanger F, Nickler S, Coulson AR (1977) DNA sequencing with chain termination inhibitors. Proc Nat Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  28. Schmülling T, Schell J, Spena A (1989) Promoters of the rolA, B and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670 PubMedCrossRefGoogle Scholar
  29. Smith OP, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with gluthatione-S-transferase. Gene 67:31–40PubMedCrossRefGoogle Scholar
  30. Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331PubMedCrossRefGoogle Scholar
  31. Turgeon R (1989) The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40:119–138CrossRefGoogle Scholar
  32. van Bel AJE (2006) Sieve-pore plugging mechanisms. In: Baluska F, Volkmann D, Barlow P (eds) Cell-cell channels, Landes bioscience Georgetown, TX USA/Springer Science+Business Media New York, USA, pp 113–118Google Scholar
  33. Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388 CrossRefGoogle Scholar
  34. Wright KM, Roberts AG, Martens HJ, Sauer N, Oparka KJ (2003) Structural and functional vein development in developing tobacco leaves in relation to AtSUC2 promoter activity. Plant Physiol 131:1555–1565PubMedCrossRefGoogle Scholar
  35. Yin Y, Zhu O, Dai S, Lamb C, Beachy R (1997) RF2a, a bzip transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16:5247–5259PubMedCrossRefGoogle Scholar
  36. Zee SY (1969) Fine structure of the differentiating sieve elements of Vicia faba. Aust J Bot 17:441–456CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Gundula A. Noll
    • 1
    • 2
  • Maria E. Fontanellaz
    • 1
    • 3
  • Boris Rüping
    • 1
  • Ahmed Ashoub
    • 2
    • 4
  • Aart J. E. van Bel
    • 2
  • Rainer Fischer
    • 3
  • Michael Knoblauch
    • 2
    • 5
  • Dirk Prüfer
    • 1
    • 3
  1. 1.Institut für Biochemie und Biotechnologie der Pflanzen derWestfälischen Wilhelms-Universität MünsterMunsterGermany
  2. 2.Institut für Allgemeine Botanik der Justus Liebig Universität GießenGiessenGermany
  3. 3.Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie, Bereich MolekularbiologieSchmallenbergGermany
  4. 4.Agricultural Genetic Engineering Research InstituteAgricultural Research CentreGizaEgypt
  5. 5.School of Biological SciencesWashington State UniversityPullmannUSA

Personalised recommendations