Advertisement

Plant Molecular Biology

, Volume 65, Issue 4, pp 373–384 | Cite as

Analysis of gene-trap Ds rice populations in Korea

  • Sung Han Park
  • Nam Soo Jun
  • Chul Min Kim
  • Tae Yong Oh
  • Jin Huang
  • Yuan-hu Xuan
  • Soon Ju Park
  • Byoung Il Je
  • Hai Long Piao
  • Soo Hyun Park
  • Young Soon Cha
  • Byung Ohg Ahn
  • Hyeon So Ji
  • Myung Chul Lee
  • Seok Cheol Suh
  • Min-Hee Nam
  • Moo Young Eun
  • Gihwan YiEmail author
  • Doh Won YunEmail author
  • Chang-deok HanEmail author
Article

Abstract

Insertional mutagen-mediated gene tagging populations have been essential resources for analyzing the function of plant genes. In rice, maize transposable elements have been successfully utilized to produce transposant populations. However, many generations and substantial field space are required to obtain a sufficiently sized transposant population. In rice, the japonica and indica subspecies are phenotypically and genetically divergent. Here, callus cultures with seeds carrying Ac and Ds were used to produce 89,700 lines of Dongjin, a japonica cultivar, and 6,200 lines of MGRI079, whose genome is composed of a mixture of the genetic backgrounds of japonica and indica. Of the more than 3,000 lines examined, 67% had Ds elements. Among the Ds-carrying lines, 81% of Dongjin and 63% of MGRI079 contained transposed Ds, with an average of around 2.0 copies. By examining more than 15,000 lines, it was found that 12% expressed the reporter gene GUS during the early-seedling stage. GUS was expressed in root hairs and crown root initials at estimated frequencies of 0.78% and 0.34%, respectively. The 5,271 analyzed Ds loci were found to be randomly distributed over all of the rice chromosomes.

Keywords

Rice Ac/Ds Insertional population Gene trap Flanking sequence tags 

Notes

Acknowledgements

This project was a collaboration among laboratories at Gyeongsang National University, the NIAB, and YARI. This work was supported by a grant (code # CG151) from Crop Functional Genomics Center of the 21st Century Frontier Research Program, BioGreen 21 Program (Rural Development Administration), by Basic Research Fund (NIAB, 06-2-12-7-2), Korea Research Foundation Grant (KRF-2003-015-C00636), and from the KOSEF/MOST to the Environmental Biotechnology National Core Research Center (R15-2003-012-01001-0). This work was also supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) to Park Sung Han (KRF-2006-351-F00001) and Huang Jin (F00026). Tae Yong Oh and Yuan-hu Xuan are recipients of fellowships of the Brain Korea21 project.

Supplementary material

11103_2007_9192_MOESM1_ESM.doc (25 kb)
(DOC 25 kb)
11103_2007_9192_MOESM2_ESM.tif (220 kb)
Breeding Pedigree of Milyang 23. Japonica Jinheung was crossed with indica IR262. The progeny line IR1315A was crossed with another indica IR262 and subsequently with IR24. Pedigree data was obtained from Milyang Agricultural Station (TIF 220 kb)
11103_2007_9192_MOESM3_ESM.tif (530 kb)
Distribution of transposed sites on chromosome 3 in Ds3 (left) and Ds43 lines (right). One thousand four hundred and twenty seven and one hundred and eighty nine insertion sites were mapped on chromosome 3 in Ds3 and Ds43 lines, respectively. The vertical axis indicates the number of insertions at a given location. The horizontal line indicates distance (cM) from the original donor site (TIF 529 kb)

References

  1. An G, Lee S, Kim SH, Kim SR (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol 46:14–22PubMedCrossRefGoogle Scholar
  2. Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han CD (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623PubMedCrossRefGoogle Scholar
  3. Cho YG, McCouch SR, Kuiper M, Kang M-R, Pot J, Groenen JTM, Eun MY (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97:370–380CrossRefGoogle Scholar
  4. Cowperthwaite M, Park W, Xu Z, Yan X, Maurais SC, Dooner HK (2002) Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726PubMedCrossRefGoogle Scholar
  5. Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613PubMedCrossRefGoogle Scholar
  6. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhang Y, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Lu Y, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Zhang Y, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320PubMedCrossRefGoogle Scholar
  7. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1688PubMedCrossRefGoogle Scholar
  8. Glaszmann JC (1987) Isozymes and classification of asian rice varieties. Theor Appl Genet 74:21–30CrossRefGoogle Scholar
  9. Greco R, Ouwerkerk PB, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge Dagger JH, Pereira A (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10–24PubMedCrossRefGoogle Scholar
  10. Greco R, Ouwerkerk PB, Taal AJ, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JH, Pereira A (2001) Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46:215–227PubMedCrossRefGoogle Scholar
  11. Greco R, Ouwerkerk PB, Taal AJ, Sallaud C, Guiderdoni E, Meijer AH, Hoge JH, Pereira A (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genomics 270:514–523PubMedCrossRefGoogle Scholar
  12. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci 93:7783–7788PubMedCrossRefGoogle Scholar
  13. Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63:351–364PubMedCrossRefGoogle Scholar
  14. Ito Y, Eiguchi M, Kurata N (2004) Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice. Mol Genet Genom 271:639–650Google Scholar
  15. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  16. Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi G, Nam MH, Cha YS, Yun DW, Eun MY, Han CD (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39:252–263PubMedCrossRefGoogle Scholar
  17. Kohli A, Xiong J, Greco R, Christou P, Pereira A (2001) Tagged transcriptome display (TTD) in indica rice using Ac transposition. Mol Genet Genom 226:1–11Google Scholar
  18. Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314PubMedGoogle Scholar
  19. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892PubMedCrossRefGoogle Scholar
  20. Kwon YS, Kim KM, Kim DH, Eun MY, Sohn JK (2002) Marker-assisted introgression of quantitative trait loci associated with plant regeneration ability in anther culture of rice (Oryza sativa L.). Mol Cells 14:24–28PubMedGoogle Scholar
  21. Nakagawa Y, Machida C, Machida Y, Toriyama K (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733–742PubMedGoogle Scholar
  22. Ni JJ, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42:601–607CrossRefGoogle Scholar
  23. Noro Y, Takano-Shimizu T, Syono K, Kishima Y, Sano Y (2007) Genetic variations in rice in vitro cultures at the EPSPs-RPS20 region. Theor Appl Genet 114: 705–711PubMedCrossRefGoogle Scholar
  24. Oka HI (1974) Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77:521–534PubMedGoogle Scholar
  25. Oka HI (1988) Origin of cultivated rice. Scientific Societies Press, Tokyo pp 181–209Google Scholar
  26. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316PubMedCrossRefGoogle Scholar
  27. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205PubMedCrossRefGoogle Scholar
  28. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35:225–233PubMedCrossRefGoogle Scholar
  29. Sundaresan V, Springer P, Volpe T, Haward S, Jones JDG, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810PubMedCrossRefGoogle Scholar
  30. Szeverenyi I, Ramamoorthy R, Teo Z, Luan H, Ma Z, Ramachandran S (2006) Large scale systematic study on stability of Ds element and timing of transposition in rice. Plant Cell Physiol 47:84–95PubMedCrossRefGoogle Scholar
  31. Upadhyaya NM, Zhou XR, Zhu QH, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun DW, Upadhyaya NM, Zhou X-R, Zhu QH, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun D-W, Kumar S, Narayanan KK, Peacock WJ, Dennis ES (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol 29:547–559CrossRefGoogle Scholar
  32. Upadhyaya NM, Zhu QH, Zhou XR, Eamens AL, Hoque MS, Ramm K, Shivakkumar R, Smith KF, Pan S-T, Li S, Peng K, Kim SJ, Dennis ES (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341PubMedCrossRefGoogle Scholar
  33. van Enckevort LJ, Droc G, Piffanelli P, Greco R, Gagneur C, Weber C, Gonzalez VM, Cabot P, Fornara F, Berri S, Miro B, Lan P, Rafel M, Capell T, Puigdomenech P, Ouwerkerk PB, Meijer AH, Pe’ E, Colombo L, Christou P, Guiderdoni E, Pereira A (2005) EU-OSTID OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol Biol 59:99–110PubMedCrossRefGoogle Scholar
  34. Walbot V (2000) Saturation mutagenesis using maize transposons. Curr Opin Plant Biol 3:103–107PubMedCrossRefGoogle Scholar
  35. Zhu QH, Eun MY, Han Cd, Kumar CS, Pereira A, Ramachandran S, Sundaresan V, Eamens AL, Upadhyaya NM, Wu R (2007) Transposon insertional mutants. In: Upadhyaya NM, Dennis ES (eds) Functional genomics – challenges. Progress and Prospects, SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sung Han Park
    • 1
  • Nam Soo Jun
    • 2
  • Chul Min Kim
    • 3
  • Tae Yong Oh
    • 3
  • Jin Huang
    • 3
  • Yuan-hu Xuan
    • 3
  • Soon Ju Park
    • 3
  • Byoung Il Je
    • 3
  • Hai Long Piao
    • 3
  • Soo Hyun Park
    • 3
  • Young Soon Cha
    • 1
  • Byung Ohg Ahn
    • 1
  • Hyeon So Ji
    • 1
  • Myung Chul Lee
    • 1
  • Seok Cheol Suh
    • 1
  • Min-Hee Nam
    • 2
  • Moo Young Eun
    • 1
  • Gihwan Yi
    • 2
    Email author
  • Doh Won Yun
    • 1
    Email author
  • Chang-deok Han
    • 3
    Email author
  1. 1.Rice Functional GenomicsNational Institute of Agricultural Biotechnology, RDASuwonKorea
  2. 2.Rice Division, Yeongnam Agricultural Research InstituteNational Institute of Crop ScienceMilyangKorea
  3. 3.Division of Applied Life Science, Plant Molecular Biology & Biotechnology Research Center, Environmental Biotechnology National Core Research CenterGyeongsang National UniversityJinjuKorea

Personalised recommendations