Plant Molecular Biology

, Volume 65, Issue 1–2, pp 13–30 | Cite as

Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus

  • Audrey Oudin
  • Samira Mahroug
  • Vincent Courdavault
  • Nadège Hervouet
  • Charles Zelwer
  • Manuel Rodríguez-Concepción
  • Benoit St-Pierre
  • Vincent Burlat
Article

Abstract

The monoterpene indole alkaloids (MIAs) from Madagascar periwinkle (Catharanthus roseus) are secondary metabolites of high interest due to their therapeutical values. Secologanin, the monoterpenoid moiety incorporated into MIAs, is derived from the plastidial methyl-d-erythritol 4-phosphate (MEP) pathway. Here, we have cloned a cDNA encoding hydroxymethylbutenyl diphosphate synthase (HDS), a MEP pathway enzyme, and generated antibodies to investigate the distribution of transcripts and protein in MIA-producing aerial tissues. Consistent with our earlier work, transcripts for the genes encoding the so-called early steps in monoterpenoid biosynthesis (ESMB) enzymes (HDS, others MEP pathway enzymes and geraniol 10-hydroxylase) were preferentially co-localized to internal phloem associated parenchyma (IPAP) cells. By contrast, transcripts for the enzyme catalysing the last biosynthetic step to secologanin, secologanin synthase, were found in the epidermis. A coordinated response of ESMB genes was also observed in cell cultures stimulated to synthesise MIAs by hormone treatment, whereas no changes in SLS expression were detected under the same experimental conditions. Immunocytolabelling studies with the HDS-specific serum demonstrated the localisation of HDS to the plastid stroma and revealed that HDS proteins were most abundant in IPAP cells but could also be found in other cell types, including epidermal and mesophyll cells. Besides showing the existence of post-transcriptional mechanisms regulating the levels of HDS in C. roseus cells, our results support that intercellular translocation likely plays an important role during monoterpene-secoiridoid assembly.

Keywords

Catharanthus roseus Compartmentation Coordinated regulation Hydroxymethylbutenyl 4-diphosphate synthase Methyl erythritol phosphate pathway Monoterpene indole alkaloids 

Abbreviations

DXS

1-Deoxy-d-xylulose 5-phosphate synthase

DXR

1-Deoxy-d-xylulose 5-phosphate reductoisomerase

ESMB

Early steps in monoterpenoid biosynthesis

G10H

Geraniol 10-hydroxylase

HDS

Hydroxymethylbutenyl 4-diphosphate synthase

HMBPP

Hydroxymethylbutenyl 4-diphosphate

IM

Inducing medium

IPAP

Internal phloem associated parenchyma

MECS

2C-methyl-d-erythritol 2,4-diphosphate synthase

MeJa

Methyljasmonate

MEP

Methyl-d-erythritol 4-phosphate

MIA

Monoterpene indole alkaloid

MM

Maintenance medium

PM

Production medium

SLS

Secologanin synthase

STR

Strictosidine synthase

T16H

Tabersonine 16-hydroxylase

TEM

Transmission electron microscopy

Supplementary material

References

  1. Adam KP, Thiel R, Zapp J (1999) Incorporation of 1-[1-C-13]deoxy-d-xylulose in chamomile sesquiterpenes. Arch Biochem Biophys 369:127–132PubMedCrossRefGoogle Scholar
  2. Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus roseus and Cinchona seedlings. Plant J 5:635–643CrossRefGoogle Scholar
  3. Araki N, Kusumi K, Masamoto K, Niwa Y, Iba K (2000) Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-d-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol Plant 108:19–24Google Scholar
  4. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605PubMedCrossRefGoogle Scholar
  5. Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodríguez-Concepción M (2004) Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J 40:188–199PubMedCrossRefGoogle Scholar
  6. Bouvier F, Suire C, d’Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpenes synthesis in plant cells. Plant J 24:241–252PubMedCrossRefGoogle Scholar
  7. Brinkmann U, Mattes RE, Buckel P (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85:109–114PubMedCrossRefGoogle Scholar
  8. Burlat V, Ambert K, Ruel K, Joseleau JP (1997) Relationship between the nature of lignin and the morphology of degradation performed by white-rot fungi. Plant Physiol Biochem 35:645–654Google Scholar
  9. Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897PubMedCrossRefGoogle Scholar
  10. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141PubMedCrossRefGoogle Scholar
  11. Campos N, Rodríguez-Concepción M, Sauret-Güeto S, Gallego F, Lois LM, Boronat A (2001a) Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 353:59–67PubMedCrossRefGoogle Scholar
  12. Campos N, Rodríguez-Concepción M, Seeman M, Rohmer M, Boronat A (2001b) Identification of gcpE as a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Lett 488:170–173Google Scholar
  13. Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591PubMedCrossRefGoogle Scholar
  14. Chahed K, Oudin A, Guivarc’h N, Hamdi S, Chénieux JC, Rideau M, Clastre M (2000) 1-Deoxy-d-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 38:559–566CrossRefGoogle Scholar
  15. Chatel G, Montiel G, Pré M, Memelink J, Thiersault M, Saint-Pierre B, Doireau P, Gantet P (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J Exp Bot 54:2587–2588PubMedCrossRefGoogle Scholar
  16. Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220PubMedCrossRefGoogle Scholar
  17. Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in Catharanthus cell culture. FEBS Lett 434:413–416PubMedCrossRefGoogle Scholar
  18. Courdavault V, Thiersault M, Courtois M, Gantet P, Oudin A, Doireau P, St-Pierre B, Giglioli-Guivarc’h N (2005a) CaaX-prenyltransferases are essential for expression of genes involved in the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. Plant Mol Biol 57:855–870PubMedCrossRefGoogle Scholar
  19. Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2005b) Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168:1097–1107CrossRefGoogle Scholar
  20. Décendit A, Liu D, Ouelhazi L, Doireau P, Mérillon JM, Rideau M (1992) Cytokinin-enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures-The factors affecting the cytokinin response. Plant Cell Rep 11:400–403CrossRefGoogle Scholar
  21. Décendit A, Petit G, Andreu F, Doireau P, Mérillon JM, Rideau M (1993). Putative sites of cytokinin action during their enhancing effect on indole alkaloid accumulation in periwinkle cell suspensions. Plant Cell Rep 12:710–712CrossRefGoogle Scholar
  22. Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84PubMedCrossRefGoogle Scholar
  23. Estevez JM, Cantero A, Romero C, Kawaide H, Jimenez LF, Kuzuyama T, Seto H, Kamiya Y, Leon P (2000) Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-d-erythritol-4-phosphate pathway in Arabidopsis. Plant Phys 124:95–103CrossRefGoogle Scholar
  24. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  25. Gantet P, Imbault N, Thiersault M, Doireau P (1998) Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium. Plant Cell Physiol 39:220–225Google Scholar
  26. Geerlings A, Ibanez MM, Memelink J, van der Heijden R, Verpoorte R (2000). Molecular cloning and analysis of strictosidine beta-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056PubMedCrossRefGoogle Scholar
  27. Giglioli-Guivarc’h N, Courdavault V, Oudin A, Crèche J, St-Pierre B (2006) Madagascar periwinkle, an attractive model for studying the control of the biosynthesis of terpenoid derivative compounds. In: Teixeira Da Silva JA (ed) Floriculture, Ornamental and Plant Biology, Vol. II. Global Science BooksGoogle Scholar
  28. Guevara-Garcia A, San Roman C, Arroyo A, Cortes ME, Gutiérrez-Nava MdL, Leon P (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranslational regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell 17:628–643PubMedCrossRefGoogle Scholar
  29. Gutiérrez-Nava MdL, Gillmor CS, Jiménez LF, Guevara-García A, León P (2004) CHLOROPLAST BIOGENESIS Genes Act Cell and Noncell Autonomously in Early Chloroplast Development. Plant Physiol 135:471–482CrossRefGoogle Scholar
  30. Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804PubMedCrossRefGoogle Scholar
  31. Itoh H, Tanaka-Ueguchi M, Kawaide H, Chen X, Kamiya Y, Matsuoka M (1999) The gene encoding tobacco gibberellin 3β-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. Plant J 20:15–24PubMedCrossRefGoogle Scholar
  32. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194PubMedCrossRefGoogle Scholar
  33. Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8:292–300PubMedCrossRefGoogle Scholar
  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  35. Levêque D, Wihlm J, Jehl F (1996). Pharmacology of Catharanthus alkaloids. Bull Cancer 83:176–186PubMedGoogle Scholar
  36. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274PubMedCrossRefGoogle Scholar
  37. Lichtenthaler HK (1999) The 1-Deoxy-d-xylulose 5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  38. Mahroug S, Burlat V, St-Pierre B (2006a). Cellular and sub-cellular organization of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem Rev (in press). DOI 10.1007/s11101–006–9017–1Google Scholar
  39. Mahroug S, Courdavault V, Thiersault M, St-Pierre B, Burlat V (2006b). Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223:1191–1200PubMedCrossRefGoogle Scholar
  40. Menke F, Champion A, Kijne J, Memelink J (1999a) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463PubMedCrossRefGoogle Scholar
  41. Menke F, Parchamnn S, Mueller MJ, Kijne J, Memelink J (1999b) Involvement of the octadenoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biostynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296PubMedCrossRefGoogle Scholar
  42. Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594PubMedCrossRefGoogle Scholar
  43. Nagata N, Suzuki M, Yoshida S, Muranaka T (2002) Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216:345–350PubMedCrossRefGoogle Scholar
  44. Oudin A, Courtois M, Rideau M, Clastre M (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis Phytochem Rev (in press). DOI 10.1007/s11101–006–9054–9Google Scholar
  45. Oudin A, Hamdi S, Ouélhazi L, Chénieux JC, Rideau M, Clastre M (1999) Induction of a novel cytochrome P450 (CYP96 family) in periwinkle (Catharanthus roseus) cells induced for terpenoid indole alkaloid production. Plant Sci 149:105–113CrossRefGoogle Scholar
  46. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574PubMedCrossRefGoogle Scholar
  47. Querol J, Campos N, Imperial S, Boronat A, Rodríguez-Concepción M (2002) Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett 514:343–346PubMedCrossRefGoogle Scholar
  48. Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MC, Inzé D, Oksman-Caldentev KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619PubMedCrossRefGoogle Scholar
  49. Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: Multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15CrossRefGoogle Scholar
  50. Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoids biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089PubMedCrossRefGoogle Scholar
  51. Rodríguez-Concepción M, Querol J, Lois LM, Imperial S, Boronat A (2003) Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit. Planta 217:476–482PubMedCrossRefGoogle Scholar
  52. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Habour, NYGoogle Scholar
  53. Sauret-Güeto S, Botella-Pavia P, Flores-Perez U, Martinez-Garcia JF, San Roman C, Leon P, Boronat A, Rodríguez-Concepción M (2006) Plastid cues post-transcriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiol 141:75–84PubMedCrossRefGoogle Scholar
  54. Seemann M, Wegner P, Schunemann V, Bui BT, Wolff M, Marquet A, Trautwein AX, Rohmer M (2005) Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J Biol Inorg Chem 10:131–137PubMedCrossRefGoogle Scholar
  55. Silverstone AL, Chang CW, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19PubMedCrossRefGoogle Scholar
  56. St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900PubMedCrossRefGoogle Scholar
  57. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Ac Res 22:4673–4680CrossRefGoogle Scholar
  58. Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297PubMedCrossRefGoogle Scholar
  59. Van der Heijden R, Jacobs D, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus Alkaloids: Pharmacognosy and Biotechnology. Curr Med Chem 11:607–628CrossRefGoogle Scholar
  60. Veau B, Courtois M, Oudin A, Chénieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517:159–163PubMedGoogle Scholar
  61. Yahia A, Kevers C, Gaspar T, Chénieux JC, Rideau M, Crèche J (1998) Cytokinins and ethylene stimulate indole alkaloids accumulation in cell suspension cultures of Catharanthus roseus by two distinct mechanisms. Plant Sci 133:9–15CrossRefGoogle Scholar
  62. Yamaguchi S, Kamiya Y, Sun TP (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Audrey Oudin
    • 1
  • Samira Mahroug
    • 2
    • 5
  • Vincent Courdavault
    • 2
  • Nadège Hervouet
    • 3
  • Charles Zelwer
    • 3
  • Manuel Rodríguez-Concepción
    • 4
    • 6
  • Benoit St-Pierre
    • 2
    • 5
  • Vincent Burlat
    • 2
    • 5
  1. 1.EA 2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences PharmaceutiquesUniversité François Rabelais de ToursToursFrance
  2. 2.EA 2106 “Biomolécules et Biotechnologies Végétales”, UFR des Sciences et TechniquesUniversité François Rabelais de ToursToursFrance
  3. 3.Centre de Biophysique MoléculaireUPR 4301, CNRSOrleans cedex 02France
  4. 4.Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  5. 5.Unité sous Contrat reconnue par l’INRA “Facteurs de transcription et ingénierie métabolique végétale”Université François Rabelais de ToursToursFrance
  6. 6.Consorci CSIC-IRTA de Genetica Molecular VegetalBarcelonaSpain

Personalised recommendations