Advertisement

Plant Molecular Biology

, Volume 64, Issue 5, pp 601–611 | Cite as

Biochemical properties of a plastidial DNA polymerase of rice

  • Ryo TakeuchiEmail author
  • Seisuke Kimura
  • Ai Saotome
  • Kengo Sakaguchi
Article

Abstract

Plastids are organelles unique to plant cells and are responsible for photosynthesis and other metabolic functions. Despite their important cellular roles, relatively little is known about the mechanism of plastidial DNA replication and repair. Recently, we identified a novel DNA polymerase in Oryza Sativa L. (OsPOLP1, formerly termed OsPolI-like) that is homologous to prokaryotic DNA polymerase Is (PolIs), and suggested that this polymerase might be involved in plastidial DNA replication and repair. Here, we propose to rename the plant PolI homologs as DNA polymerase π (POLP), and investigate the biochemical properties of full-length OsPOLP1. The purified OsPOLP1 elongated both DNA and RNA primer hybridized to a DNA template, and possessed a 3′ exonuclease activity. Moreover, OsPOLP1 displayed high processivity and fidelity, indicating that this polymerase has the biochemical characteristics appropriate for DNA replication. We found that POLPs have two extra sequences in the polymerase domain that are absent in prokaryotic PolIs. Deletion of either insert from OsPOLP1 caused a decrease in DNA synthetic activity, processivity, and DNA binding activity. In addition, OsPOLP1 efficiently catalyzed strand displacement on nicked DNA with a 5′-deoxyribose phosphate, suggesting that this enzyme might be involved in a repair pathway similar to long-patch base excision repair. These results provide insights into the possible role of POLPs in plastidial DNA replication and repair.

Keywords

DNA polymerase π DNA repair DNA replication  Oryza sativa LPlastid Processivity 

Abbreviations

Pol

DNA polymerase

POLP

DNA polymerase π

GST

Glutathione S-transferase

E. coli

Escherichia coli

dNTP

Deoxynucleoside-5-triphosphate

BER

Base excision repair

dRP

5′-deoxyribose phosphate

Notes

Acknowledgements

We thank Dr. Kei-ichi Takata (University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Pittsburgh, PA) for the helpful discussion of this work. R.T. and S.K. were supported by Research Fellowships of the Japan Society for the Promotion of Science.

Supplementary material

11103_2007_9179_MOESM1_ESM.ppt (70 kb)
(PPT 70 kb)
11103_2007_9179_MOESM2_ESM.doc (50 kb)
(DOC 51 kb)
11103_2007_9179_MOESM3_ESM.gif (405 kb)
(GIF 406 kb)

References

  1. Bambara RA, Uyemura D, Choi T (1978) On the processive mechanism of Escherichia coli DNA polymerase I. Quantitative assessment of processivity. J Biol Chem 253:413–423PubMedGoogle Scholar
  2. Bebenek K, Joyce CM, Fitzgerald MP, Kunkel TA (1990) The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem 265:13878–13887PubMedGoogle Scholar
  3. Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260:352–355PubMedCrossRefGoogle Scholar
  4. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666PubMedCrossRefGoogle Scholar
  5. Bernad A, Blanco L, Lazaro JM, Martin G, Salas M (1989) A conserved 3'-5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228PubMedCrossRefGoogle Scholar
  6. Bloom LB, Chen X, Fygenson DK, Turner J, O'Donnell M, Goodman MF (1997) Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of β, γ complex processivity proteins and ε proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem 272:27919–27930PubMedCrossRefGoogle Scholar
  7. Boosalis MS, Mosbaugh DW, Hamatake R, Sugino A, Kunkel TA, Goodman MF (1989) Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and by miscoding. J Biol Chem 264:11360–11366PubMedGoogle Scholar
  8. Boosalis MS, Petruska J, Goodman MF (1987) DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J Biol Chem 262:14689–14696PubMedGoogle Scholar
  9. Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487–43490PubMedCrossRefGoogle Scholar
  10. Chen X, Zuo S, Kelman Z, O'Donnell M, Hurwitz J, Goodman MF (2000) Fidelity of eucaryotic DNA polymerase δ holoenzyme from Schizosaccharomyces pombe. J Biol Chem 275:17677–17682PubMedCrossRefGoogle Scholar
  11. Derbyshire V, Grindley ND, Joyce CM (1991) The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. Embo J 10:17–24PubMedGoogle Scholar
  12. Dianov GL, Sleeth KM, Dianova II, Allinson SL (2003) Repair of abasic sites in DNA. Mutat Res 531:157–163PubMedGoogle Scholar
  13. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391:251–258PubMedCrossRefGoogle Scholar
  14. Fygenson DK, Goodman MF (1997) Appendix. Gel kinetic analysis of polymerase fidelity in the presence of multiple enzyme DNA encounters. J Biol Chem 272:27931–27935PubMedCrossRefGoogle Scholar
  15. Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase γ in mitochondrial DNA replication and repair. Chem Rev 106:383–405PubMedCrossRefGoogle Scholar
  16. Haracska L, Prakash L, Prakash S (2003) A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev 17:2777–2785PubMedCrossRefGoogle Scholar
  17. Hübscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163PubMedCrossRefGoogle Scholar
  18. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379PubMedCrossRefGoogle Scholar
  19. Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766PubMedCrossRefGoogle Scholar
  20. Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, Yamamoto T, Hashimoto J, Sakaguchi K (2002) A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucl Acids Res 30:1585–1592PubMedCrossRefGoogle Scholar
  21. Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279:16895–16898PubMedCrossRefGoogle Scholar
  22. Kunkel TA (1985a) The mutational specificity of DNA polymerase-β during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J Biol Chem 260:5787–5796PubMedGoogle Scholar
  23. Kunkel TA (1985b) The mutational specificity of DNA polymerases-α and -γ during in vitro DNA synthesis. J Biol Chem 260:12866–12874PubMedGoogle Scholar
  24. Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF (2004) Implication of DNA polymerase λ in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279:805–811PubMedCrossRefGoogle Scholar
  25. Li Y, Korolev S, Waksman G (1998) Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. Embo J 17:7514–7525PubMedCrossRefGoogle Scholar
  26. Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2001) The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276:38555–38562PubMedCrossRefGoogle Scholar
  27. Marini F, Kim N, Schuffert A, Wood RD (2003) POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem 278:32014–32019PubMedCrossRefGoogle Scholar
  28. Masuda Y, Takahashi M, Tsunekuni N, Minami T, Sumii M, Miyagawa K, Kamiya K (2001) Deoxycytidyl transferase activity of the human REV1 protein is closely associated with the conserved polymerase domain. J Biol Chem 276:15051–15058PubMedCrossRefGoogle Scholar
  29. Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase β during DNA repair. Science 269:699–702PubMedCrossRefGoogle Scholar
  30. Minnick DT, Astatke M, Joyce CM, Kunkel TA (1996) A thumb subdomain mutant of the large fragment of Escherichia coli DNA polymerase I with reduced DNA binding affinity, processivity, and frameshift fidelity. J Biol Chem 271:24954–24961PubMedCrossRefGoogle Scholar
  31. Mori Y, Kimura S, Saotome A, Kasai N, Sakaguchi N, Uchiyama Y, Ishibashi T, Yamamoto T, Chiku H, Sakaguchi K (2005) Plastid DNA polymerases from higher plants, Arabidopsis thaliana. Biochem Biophys Res Commun 334:43–50PubMedCrossRefGoogle Scholar
  32. Nakai H, Richardson CC (1986) Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. Protein–protein and protein–DNA interactions involved in RNA-primed DNA synthesis. J Biol Chem 261:15208–15216PubMedGoogle Scholar
  33. Nielsen BL, Rajasekhar VK, Tewari KK (1991) Pea chloroplast DNA primase: characterization and role in initiation of replication. Plant Mol Biol 16:1019–1034PubMedCrossRefGoogle Scholar
  34. Patel PH, Loeb LA (2000) DNA polymerase active site is highly mutable: evolutionary consequences. Proc Natl Acad Sci USA 97:5095–5100PubMedCrossRefGoogle Scholar
  35. Patel PH, Suzuki M, Adman E, Shinkai A, Loeb LA (2001) Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection. J Mol Biol 308:823–837PubMedCrossRefGoogle Scholar
  36. Pinz KG, Bogenhagen DF (2000) Characterization of a catalytically slow AP lyase activity in DNA polymerase γ and other family A DNA polymerases. J Biol Chem 275:12509–12514PubMedCrossRefGoogle Scholar
  37. Sato N (2001) Was the evolution of plastid genetic machinery discontinuous? Trends Plant Sci 6:151–155PubMedCrossRefGoogle Scholar
  38. Seki M, Masutani C, Yang LW, Schuffert A, Iwai S, Bahar I, Wood RD (2004) High-efficiency bypass of DNA damage by human DNA polymerase Q. Embo J 23:4484–4494PubMedCrossRefGoogle Scholar
  39. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231PubMedCrossRefGoogle Scholar
  40. Tabor S, Huber HE, Richardson CC (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 262:16212–16223PubMedGoogle Scholar
  41. Takata K, Shimizu T, Iwai S, Wood RD (2006) Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem 281:23445–23455PubMedCrossRefGoogle Scholar
  42. Takeuchi R, Oshige M, Uchida M, Ishikawa G, Takata K, Shimanouchi K, Kanai Y, Ruike T, Morioka H, Sakaguchi K (2004) Purification of Drosophila DNA polymerase ζ by REV1 protein-affinity chromatography. Biochem J 382:535–543PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ryo Takeuchi
    • 1
    Email author
  • Seisuke Kimura
    • 1
  • Ai Saotome
    • 1
  • Kengo Sakaguchi
    • 1
  1. 1.Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda-shiJapan

Personalised recommendations