Plant Molecular Biology

, Volume 64, Issue 4, pp 371–386 | Cite as

Improved drought tolerance without undesired side effects in transgenic plants producing trehalose

  • Sazzad Karim
  • Henrik Aronsson
  • Henrik Ericson
  • Minna Pirhonen
  • Barbara Leyman
  • Björn Welin
  • Einar Mäntylä
  • E. Tapio Palva
  • Patrick Van Dijck
  • Kjell-Ove Holmström
Article

Abstract

Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too small to provide a protective function. However, overproduction of TPS in plants has also been found combined with pleiotropic growth aberrations. This paper describes three successful strategies to circumvent such growth defects without loosing the improved stress tolerance. First, we introduced into tobacco a double construct carrying the genes TPS1 and TPS2 (encoding TPP) from Saccharomyces cerevisiae. Both genes are regulated by an Arabidopsis RuBisCO promoter from gene AtRbcS1A giving constitutive production of both enzymes. The second strategy involved stress-induced expression by fusing the coding region of ScTPS1 downstream of the drought-inducible ArabidopsisAtRAB18 promoter. In transgenic tobacco plants harbouring genetic constructs with either ScTPS1 alone, or with ScTPS1 and ScTPS2 combined, trehalose biosynthesis was turned on only when the plants experienced stress. The third strategy involved the use of AtRbcS1A promoter together with a transit peptide in front of the coding sequence of ScTPS1, which directed the enzyme to the chloroplasts. This paper confirms that the enhanced drought tolerance depends on unknown ameliorated water retention as the initial water status is the same in control and transgenic plants and demonstrates the influence of expression of heterologous trehalose biosynthesis genes on Arabidopsis root development.

Keywords

Abiotic stress Arabidopsis Improved stress tolerance Tobacco Trehalose Trehalose-6-Phosphate 

Abbreviations

DC

double constitutive (in genetic constructs)

DI

double inducible (in genetic constructs)

Glc6P

glucose-6-phosphate

Ler

Arabidopsis thaliana, wild-type ecotype Landsberg erecta

MCS

multiple cloning site

ori

origin of replication

OtsA

Escherichia coli trehalose-6-phosphate synthase

OtsB

E. coli trehalose-6-phosphate phosphatase

RE

restriction enzyme

RuBisCO

Ribulose-1,5-bisphosphate carboxylase

RWC

relative water content

Sc

Saccharomyces cerevisiae

SC

single constitutive (in genetic constructs)

SCTP

single constitutive with a transit peptide (in genetic constructs)

SI

single inducible (in genetic constructs)

Tps1

eukaryotic trehalose-6-phosphate synthase

Tps2

eukaryotic trehalose-6-phosphate phosphatase

T6P

trehalose-6-phosphate

TH

trehalase

TP

transit peptide

References

  1. Aeschbacher RA, Muller J, Boller T, Wiemken A (1999) Purification of the trehalase GMTRE1 from soybean nodules and cloning of its cDNA. GMTRE1 is expressed at a low level in multiple tissues. Plant Physiol 119:489–496PubMedCrossRefGoogle Scholar
  2. Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett 529:215–220PubMedCrossRefGoogle Scholar
  3. Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659PubMedCrossRefGoogle Scholar
  4. Bae H, Herman E, Sicher R (2005a) Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Sci 168:1293–1301CrossRefGoogle Scholar
  5. Bae H, Herman E, Bailey B, Bae HJ, Sicher R (2005b) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126CrossRefGoogle Scholar
  6. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87:223–226CrossRefGoogle Scholar
  7. Bonini BM, Van Dijck P, Thevelein JM (2003) Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochim Biophys Acta 1606:83–93PubMedCrossRefGoogle Scholar
  8. Bonini BM, Van Dijck P, Thevelein JM (2004) Trehalose metabolism: enzymatic pathways and physiological functions. In: Esser K, Lemke PA (eds) The Mycota: A Treatise on the Biology of Fungi with Emphasis on Systems for Fundamental and Applied Research. In: Brambl R, Marzluf GA (eds) Biochemistry and Molecular Biology, ed 2, vol III. Springer Verlag, Berlin-Heidelberg, pp 291–332Google Scholar
  9. Blázquez MA, Santos E, Flores CL, Martinezzapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis Tps1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–689PubMedCrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  11. Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257PubMedCrossRefGoogle Scholar
  12. Denecke J, De Rycke R, Botterman J (1992) Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 11:2345–2355PubMedGoogle Scholar
  13. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904PubMedCrossRefGoogle Scholar
  14. Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496Google Scholar
  15. Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235PubMedCrossRefGoogle Scholar
  16. Elbein A (1974) The metabolism of alpha-alpha-trehalose. Adv Carbohydr Chem 30:227–256CrossRefGoogle Scholar
  17. Eleutherio ECA, Araujo PS, Panek AD (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596PubMedCrossRefGoogle Scholar
  18. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99:15898–15903PubMedCrossRefGoogle Scholar
  19. Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen PWHH, Degraaf PTHM, Poels J, Vandun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190PubMedCrossRefGoogle Scholar
  20. Goddijn OJM, Smeekens J (1998) Sensing trehalose biosynthesis in plants. Plant J 14:143–146PubMedCrossRefGoogle Scholar
  21. Gómez LD, Baud S, Graham IA (2005) The role of trehalose-6-phosphate synthase in Arabidopsis embryo development. Biochem Soc Trans 33:280–282PubMedCrossRefGoogle Scholar
  22. González L, González-Vilar M (2001) Determination of relative water content. In: Roger MJR (eds) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Netherlands, pp 207–212Google Scholar
  23. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 PubMedCrossRefGoogle Scholar
  24. Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283PubMedCrossRefGoogle Scholar
  25. Holmström K-O, Mäntylä E, Welin B, Mandal A, Tunnela OE, Londesborough J, Palva ET (1996) Drought tolerance in tobacco. Nature 379:683–684CrossRefGoogle Scholar
  26. Holmström K-O, Welin B, Mandal A, Kristiansdottir I, Teeri TH, Lamark T, Strøm AR, Palva ET (1994) Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. Plant J 6:749–758PubMedCrossRefGoogle Scholar
  27. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524PubMedCrossRefGoogle Scholar
  28. Karim S, Lundh D, Holmström K-O, Mandal A, Pirhonen M (2005) Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model 11:226–236PubMedCrossRefGoogle Scholar
  29. Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci 112:11118–11123CrossRefGoogle Scholar
  30. Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339PubMedCrossRefGoogle Scholar
  31. Krebbers E, Seurinck J, Herdies L, Cashmore AR, Timko MP (1988) Four genes in two diverged subfamilies encode the ribulose-1,5-bisphosphate carboxylase small subunit polypeptides of Arabidopsis thaliana. Plant Mol Biol 11:745–759CrossRefGoogle Scholar
  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  33. Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513PubMedCrossRefGoogle Scholar
  34. Lång V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20:951–962PubMedCrossRefGoogle Scholar
  35. Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47PubMedCrossRefGoogle Scholar
  36. Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J 397:139–148PubMedCrossRefGoogle Scholar
  37. Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134:1661–1666PubMedGoogle Scholar
  38. Meric L, Lambert-Guilois S, Neyreneuf O, Richard-Molard D (1995) Cryoresistance in baker’s yeast Saccharomyces cerevisiae in frozen dough: contribution of cellular trehalose. Cereal Chem 72:609–615Google Scholar
  39. Meza TJ, Kamfjord D, Håkelien A-M, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67PubMedCrossRefGoogle Scholar
  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  41. Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532Google Scholar
  42. Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762PubMedCrossRefGoogle Scholar
  43. Ramon M, Rolland F, Thevelein JM, Van Dijck P, Leyman B (2007) ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Mol Biol 63:195–206PubMedCrossRefGoogle Scholar
  44. Romero C, Belles JM, Vaya JL, Serrano R, Culianezmacia FA (1997) Expression of the yeast trehalose 6 phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta 201:293–297 CrossRefPubMedGoogle Scholar
  45. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230PubMedCrossRefGoogle Scholar
  46. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci 100:6849–6854PubMedCrossRefGoogle Scholar
  47. Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890PubMedCrossRefGoogle Scholar
  48. Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201PubMedCrossRefGoogle Scholar
  49. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260PubMedCrossRefGoogle Scholar
  50. Van Dijck P, Mascorro-Gallardo JO, De Bus M, Royackers K, Iturriaga G, Thevelein JM (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochem J 366:63–71PubMedGoogle Scholar
  51. Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362 PubMedCrossRefGoogle Scholar
  52. Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana – identification by functional complementation of the yeast TPS2 mutant. Plant J 13:673–683PubMedCrossRefGoogle Scholar
  53. Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861PubMedCrossRefGoogle Scholar
  54. Wang YJ, Hao YJ, Zhang ZG, Chen T, Zhang JS, Chen SY (2005) Isolation of trehalose-6-phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J Plant Physiol 162:215–223PubMedCrossRefGoogle Scholar
  55. Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sazzad Karim
    • 1
    • 9
  • Henrik Aronsson
    • 2
  • Henrik Ericson
    • 1
  • Minna Pirhonen
    • 3
  • Barbara Leyman
    • 4
    • 5
  • Björn Welin
    • 6
  • Einar Mäntylä
    • 7
  • E. Tapio Palva
    • 8
  • Patrick Van Dijck
    • 4
    • 5
  • Kjell-Ove Holmström
    • 1
  1. 1.School of Life SciencesUniversity of SkövdeSkövdeSweden
  2. 2.Department of Plant and Environmental SciencesUniversity of GöteborgGöteborgSweden
  3. 3.Department of Applied BiologyUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Molecular MicrobiologyVIB, K.U. LeuvenLeuvenBelgium
  5. 5.Laboratory of Molecular Cell BiologyK.U. LeuvenLeuvenBelgium
  6. 6.Lambaré 948, Piso 3, dpto ABuenos AiresArgentina
  7. 7.ORF GeneticsReykjavikIceland
  8. 8.Department of Biosciences, Division of GeneticsUniversity of HelsinkiHelsinkiFinland
  9. 9.Department of Plant Biology and Forest GeneticsSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations