Plant Molecular Biology

, Volume 63, Issue 2, pp 237–255 | Cite as

Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90

  • Keren Aviezer-Hagai
  • Julia Skovorodnikova
  • Mario Galigniana
  • Odelia Farchi-Pisanty
  • Erez Maayan
  • Shmuel Bocovza
  • Yael Efrat
  • Pascal von Koskull-Döring
  • Nir Ohad
  • Adina Breiman


The plant co-chaperones FK506-binding proteins (FKBPs) are peptidyl prolyl cis-trans isomerases that function in protein folding, signal transduction and chaperone activity. We report the characterization of the Arabidopsis large FKBPs ROF1 (AtFKBP62) and ROF2 (AtFKBP65) expression and protein accumulation patterns. Transgenic plants expressing ROF1 promoter fused to GUS reporter gene reveal that ROF1 expression is organ specific. High expression was observed in the vascular elements of roots, in hydathodes and trichomes of leaves and in stigma, sepals, and anthers. The tissue specificity and temporal expression of ROF1 and ROF2 show that they are developmentally regulated. Although ROF1 and ROF2 share 85% identity, their expression in response to heat stress is differentially regulated. Both genes are induced in plants exposed to 37 °C, but only ROF2 is a bonafide heat-stress protein, undetected when plants are grown at 22 °C. ROF1/ROF2 proteins accumulate at 37 °C, remain stable for at least 4 h upon recovery at 22 °C, whereas, their mRNA level is reduced after 1 h at 22 °C. By protein interaction assays, it was demonstrated, that ROF1 is a novel partner of HSP90. The five amino acids identified as essential for recognition and interaction between the mammalian chaperones and HSP90 are conserved in the plant ROF1-HSP90. We suggest that ROF/HSP90 complexes assemble in vivo. We propose that specific complexes formation between an HSP90 and ROF isoforms depends on their spatial and temporal expression. Such complexes might be regulated by environmental conditions such as heat stress or internal cues such as different hormones.


ROF1/2 AtFKBP62/65 Immunophilins HSP90 TPR PPIase 



FK506-binding protein


Peptidyl prolyl cis-trans isomerase


Cyclophilin 40


Cyclosporin A


Tripartite tetratricopeptide repeats


HSP70 and HSP90 organizing protein


FKBP12-like domain


Calmodulin binding domain




Heat shock protein


Protein phosphatase 5


Heat shock factor


Heat shock element


Stress response element

Supplementary material

11103_2006_9085_MOESM1_ESM.tif (1.2 mb)
Supplementary material
11103_2006_9085_MOESM2_ESM.tif (634 kb)
Supplementary material
11103_2006_9085_MOESM3_ESM.tif (2.1 mb)
Supplementary material
11103_2006_9085_MOESM4_ESM.pdf (90 kb)
Supplementary material


  1. Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. Embo J 9:1897–1906PubMedGoogle Scholar
  2. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris 316:1194–1199Google Scholar
  3. Blecher O, Erel N, Callebaut I, Aviezer K, Breiman A (1996) A novel plant peptidyl-prolyl-cis-trans-isomerase (PPIase): cDNA cloning, structural analysis, enzymatic activity and expression. Plant Mol Biol 32:493–504PubMedCrossRefGoogle Scholar
  4. Bowman J (1994) Arabidopsis: an atlas of morphology and development. Springer, New YorkGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Breiman A, Fawcett TW, Ghirardi ML, Mattoo AK (1992) Plant organelles contain distinct peptidylprolyl cis,trans-isomerases. J Biol Chem 267:21293–21296PubMedGoogle Scholar
  7. Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14PubMedCrossRefGoogle Scholar
  8. Carrigan PE, Sikkink LA, Smith DF, Ramirez-Alvarado M (2006) Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure. Protein Sci 15:522–532PubMedCrossRefGoogle Scholar
  9. Chambraud B, Rouviere-Fourmy N, Radanyi C, Hsiao K, Peattie DA, Livingston DJ, Baulieu EE (1993) Overexpression of p59-HBI (FKBP59), full length and domains, and characterization of PPlase activity. Biochem Biophys Res Commun 196:160–166PubMedCrossRefGoogle Scholar
  10. Chang HC, Nathan DF, Lindquist S (1997) In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol 17:318–325PubMedGoogle Scholar
  11. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273:35194–35200PubMedCrossRefGoogle Scholar
  12. Christou P, Ford TL. (1995) The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Transgenic Res 4:44–51CrossRefGoogle Scholar
  13. Clark MS (1997) Plant molecular biology: a laboratory manual. Springer-Verlag, Berlin Heidelberg, pp 8–9Google Scholar
  14. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  15. Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. Embo J 17:1192–1199PubMedCrossRefGoogle Scholar
  16. Davies TH, Ning YM, Sanchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44:2030–2038PubMedCrossRefGoogle Scholar
  17. Dornan J, Taylor P, Walkinshaw MD (2003) Structures of immunophilins and their ligand complexes. Curr Top Med Chem 3:1392–1409PubMedCrossRefGoogle Scholar
  18. Dwivedi RS, Breiman A, Herman EM (2003) Differential distribution of the cognate and heat-stress-induced isoforms of high Mr cis-trans-prolyl peptidyl isomerase (FKBP) in the cytoplasm and nucleoplasm. J Exp Bot 54:2679–2689PubMedCrossRefGoogle Scholar
  19. Eckhoff A, Granzin J, Kamphausen T, Buldt G, Schulz B, Weiergraber OH (2005) Crystallization and preliminary X-ray analysis of immunophilin-like FKBP42 from Arabidopsis thaliana. Acta Crystallograph Sect F Struct Biol Cryst Commun 61:363–365PubMedCrossRefGoogle Scholar
  20. Fanghanel J, Fischer G (2004) Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci 9:3453–3478PubMedGoogle Scholar
  21. Faure JD, Gingerich D, Howell SH (1998a) An Arabidopsis immunophilin, AtFKBP12, binds to AtFIP37 (FKBP interacting protein) in an interaction that is disrupted by FK506. Plant J 15:783–789CrossRefGoogle Scholar
  22. Faure JD, Vittorioso P, Santoni V, Fraisier V, Prinsen E, Barlier I, Onckelen HV, Caboche M, Bellini C (1998b) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation. Development 125:909–918Google Scholar
  23. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  24. Fischer G, Tradler T, Zarnt T (1998) The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett 426:17–20CrossRefGoogle Scholar
  25. Galat A (2004) A note on clustering the functionally-related paralogues and orthologues of proteins: a case of the FK506-binding proteins (FKBPs). Comput Biol Chem 28:129–140PubMedCrossRefGoogle Scholar
  26. Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity–targets–functions. Curr Top Med Chem 3:1315–1347PubMedCrossRefGoogle Scholar
  27. Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu UH, Schulz B, Martinoia E (2004) Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15:3393–3405PubMedCrossRefGoogle Scholar
  28. Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249PubMedCrossRefGoogle Scholar
  29. Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207PubMedCrossRefGoogle Scholar
  30. Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16:173–177PubMedCrossRefGoogle Scholar
  31. Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol 129:1138–1149PubMedCrossRefGoogle Scholar
  32. Harrar Y, Bellec Y, Bellini C, Faure JD (2003) Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol 132:1217–1227PubMedCrossRefGoogle Scholar
  33. Harrell JM, Kurek I, Breiman A, Radanyi C, Renoir JM, Pratt WB, Galigniana MD (2002) All of the protein interactions that link steroid receptor.hsp90.immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells. Biochemistry 41:5581–5587PubMedCrossRefGoogle Scholar
  34. He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267PubMedCrossRefGoogle Scholar
  35. Hueros G, Rahfeld J, Salamini F, Thompson R (1998) A maize FK506-sensitive immunophilin, mzFKBP-66, is a peptidylproline cis-trans-isomerase that interacts with calmodulin and a 36-kDa cytoplasmic protein. Planta 205:121–131PubMedCrossRefGoogle Scholar
  36. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6:3901–3907PubMedGoogle Scholar
  37. Jin YJ, Burakoff SJ, Bierer BE (1992) Molecular cloning of a 25-kDa high affinity rapamycin binding protein, FKBP25. J Biol Chem 267:10942–10945PubMedGoogle Scholar
  38. Kamphausen T, Fanghanel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276PubMedCrossRefGoogle Scholar
  39. Krishna P, Reddy RK, Sacco M, Frappier JR, Felsheim RF (1997) Analysis of the native forms of the 90 kDa heat shock protein (hsp90) in plant cytosolic extracts. Plant Mol Biol 33:457–466PubMedCrossRefGoogle Scholar
  40. Kurek I, Aviezer K, Erel N, Herman E, Breiman A (1999) The wheat peptidyl prolyl cis-trans-isomerase FKBP77 is heat induced and developmentally regulated. Plant Physiol 119:693–704PubMedCrossRefGoogle Scholar
  41. Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 271:11–21PubMedCrossRefGoogle Scholar
  42. Luan S, Kudla J, Gruissem W, Schreiber SL (1996) Molecular characterization of a FKBP-type immunophilin from higher plants. Proc Natl Acad Sci USA 93:6964–6969PubMedCrossRefGoogle Scholar
  43. Luan S, Lane WS, Schreiber SL (1994) pCyP B: a chloroplast-localized, heat shock-responsive cyclophilin from fava bean. Plant Cell 6:885–892PubMedCrossRefGoogle Scholar
  44. Magiri EN, Farchi-Pisanty O, Avni A, Breiman A (2006) The expression of the large rice FK506 binding proteins (FKBPs) demonstrate tissue specificity and heat stress responsiveness. Plant Sci 170:695–704CrossRefGoogle Scholar
  45. Owens-Grillo JK, Stancato LF, Hoffmann K, Pratt WB, Krishna P (1996) Binding of immunophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants. Biochemistry 35:15249–15255PubMedCrossRefGoogle Scholar
  46. Perez-Perez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–117PubMedCrossRefGoogle Scholar
  47. Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308:795–806PubMedCrossRefGoogle Scholar
  48. Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644PubMedCrossRefGoogle Scholar
  49. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–872PubMedCrossRefGoogle Scholar
  50. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624PubMedCrossRefGoogle Scholar
  51. Reddy RK, Kurek I, Silverstein AM, Chinkers M, Breiman A, Krishna P (1998) High-molecular-weight FK506-binding proteins are components of heat-shock protein 90 heterocomplexes in wheat germ lysate. Plant Physiol 118:1395–1401PubMedCrossRefGoogle Scholar
  52. Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. Embo J 22:1158–1167PubMedCrossRefGoogle Scholar
  53. Romano P, Gray J, Horton P, Luan S (2005) Plant immunophilins: functional versatility beyond protein maturation. New Phytol 166:753–769PubMedCrossRefGoogle Scholar
  54. Sanchez ER, Faber LE, Henzel WJ, Pratt WB (1990) The 56–59-kilodalton protein identified in untransformed steroid receptor complexes is a unique protein that exists in cytosol in a complex with both the 70- and 90-kilodalton heat shock proteins. Biochemistry 29:5145–5152PubMedCrossRefGoogle Scholar
  55. Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8:86–92PubMedCrossRefGoogle Scholar
  56. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101:199–210PubMedCrossRefGoogle Scholar
  57. Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287PubMedCrossRefGoogle Scholar
  58. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272:16224–16230PubMedCrossRefGoogle Scholar
  59. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J (2003) Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc Natl Acad Sci USA 100:868–873PubMedCrossRefGoogle Scholar
  60. Smith DF, Baggenstoss BA, Marion TN, Rimerman RA (1993) Two FKBP-related proteins are associated with progesterone receptor complexes. J Biol Chem 268:18365–18371PubMedGoogle Scholar
  61. Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure JD (2006) The C-terminus of the immunophilin PASTICCINO1 is required for plant development and for interaction with a NAC-like transcription factor. J Biol ChemGoogle Scholar
  62. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedCrossRefGoogle Scholar
  63. Standaert RF, Galat A, Verdine GL, Schreiber SL (1990) Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature 346:671–674PubMedCrossRefGoogle Scholar
  64. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229:105–124PubMedCrossRefGoogle Scholar
  65. Vittorioso P, Cowling R, Faure JD, Caboche M, Bellini C (1998) Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development. Mol Cell Biol 18:3034–3043PubMedGoogle Scholar
  66. Vucich VA, Gasser CS (1996) Novel structure of a high molecular weight FK506 binding protein from Arabidopsis thaliana. Mol Gen Genet 252:510–517PubMedGoogle Scholar
  67. Ward BK, Allan RK, Mok D, Temple SE, Taylor P, Dornan J, Mark PJ, Shaw DJ, Kumar P, Walkinshaw MD, Ratajczak T (2002) A structure-based mutational analysis of cyclophilin 40 identifies key residues in the core tetratricopeptide repeat domain that mediate binding to Hsp90. J Biol Chem 277:40799–40809PubMedCrossRefGoogle Scholar
  68. Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757PubMedCrossRefGoogle Scholar
  69. Weiergraber OH, Eckhoff A, Granzin J (2006) Crystal structure of a plant immunophilin domain involved in regulation of MDR-type ABC transporters. FEBS Lett 580:251–255PubMedCrossRefGoogle Scholar
  70. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedCrossRefGoogle Scholar
  71. Wu B, Li P, Liu Y, Lou Z, Ding Y, Shu C, Ye S, Bartlam M, Shen B, Rao Z (2004) 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Proc Natl Acad Sci USA 101:8348–8353PubMedCrossRefGoogle Scholar
  72. Wu B, Li P, Shu C, Shen B, Rao Z (2003) Crystallization and preliminary crystallographic studies of the C-terminal domain of human FKBP52. Acta Crystallogr D Biol Crystallogr 59:2269–2271PubMedCrossRefGoogle Scholar
  73. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469PubMedCrossRefGoogle Scholar
  74. Zhang X, Wang Y, Li H, Zhang W, Wu D, Mi H (2004) The mouse FKBP23 binds to BiP in ER and the binding of C-terminal domain is interrelated with Ca2+ concentration. FEBS Lett 559:57–60PubMedCrossRefGoogle Scholar
  75. Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409PubMedCrossRefGoogle Scholar
  76. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Keren Aviezer-Hagai
    • 1
  • Julia Skovorodnikova
    • 1
  • Mario Galigniana
    • 2
  • Odelia Farchi-Pisanty
    • 1
  • Erez Maayan
    • 1
  • Shmuel Bocovza
    • 1
  • Yael Efrat
    • 1
  • Pascal von Koskull-Döring
    • 3
  • Nir Ohad
    • 1
  • Adina Breiman
    • 1
  1. 1.Department of Plant SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Instituto de Investigaciones BioquimicasFundacion Instituto Leloir Buenos AiresBuenos AiresArgentina
  3. 3.Institute of Molecular Bio SciencesGoethe UniversityFrankfurtGermany

Personalised recommendations