Plant Molecular Biology

, Volume 62, Issue 3, pp 351–369 | Cite as

EST database for early flower development in California poppy (Eschscholzia californica Cham., Papaveraceae) tags over 6000 genes from a basal eudicot

  • John E. Carlson
  • James H. Leebens-Mack
  • P. Kerr Wall
  • Laura M. Zahn
  • Lukas A. Mueller
  • Lena L. Landherr
  • Yi Hu
  • Daniel C. Ilut
  • Jennifer M. Arrington
  • Stephanie Choirean
  • Annette Becker
  • Dawn Field
  • Steven D. Tanksley
  • Hong Ma
  • Claude W. dePamphilis
Original Paper


The Floral Genome Project (FGP) selected California poppy (Eschscholzia californica Cham. ssp. Californica) to help identify new florally-expressed genes related to floral diversity in basal eudicots. A large, non-normalized cDNA library was constructed from premeiotic and meiotic floral buds and sequenced to generate a database of 9079 high quality Expressed Sequence Tags (ESTs). These sequences clustered into 5713 unigenes, including 1414 contigs and 4299 singletons. Homologs of genes regulating many aspects of flower development were identified, including those for organ identity and development, cell and tissue differentiation, cell cycle control, and secondary metabolism. Over 5% of the transcriptome consisted of homologs to known floral gene families. Most are the first representatives of their respective gene families in basal eudicots and their conservation suggests they are important for floral development and/or function. App. 10% of the transcripts encoded transcription factors and other regulatory genes, including nine genes from the seven major lineages of the important MADS-box family of developmental regulators. Homologs of alkaloid pathway genes were also recovered, providing opportunities to explore adaptive evolution in secondary products. Furthermore, comparison of the poppy ESTs with the Arabidopsis genome provided support for putative Arabidopsis genes that previously lacked annotation. Finally, over 1800 unique sequences had no observable homology in the public databases. The California poppy EST database and library will help bridge our understanding of flower initiation and development among higher eudicot and monocot model plants and provide new opportunities for comparative analysis of gene families across angiosperm species.


EST database Flower development California poppy Basal eudicot 



Applied Biosystems




AGAMOUS-like gene








Elongation Factor 1-alpha gene


Eschscholzia californica


Expressed Sequence Tag






Gene Ontology Consortium




rate of synonymous substitutions


LEAFY gene


Million base pairs


Million years ago


myeloblastosis-like gene


National Center for Biotechnology Information


polymerase chain reaction


Plant Genome Network




PLENA gene


ribosomal RNA


Rapid Amplification of cDNA Ends


Rolling Circle Amplification


ribulose-1;5-bisphosphate carboxylase; ssp., species


The Arabidopsis Information Resource web site


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11103_2006_9025_MOESM1_ESM.xls (586 kb)
Supplementary material


  1. Albert VA, Soltis DE, Carlson JE, Farmerie WG, Wall PK, Ilut DC, Mueller LA, Landherr LL, Hu Y, Buzgo M, Kim S, Yoo M-J, Frohlich MW, Perl-Treves R, Schlarbaum S, Bliss B, Tanksley S, Oppenheimer DG, Soltis PS, Ma H, dePamphilis CW, Leebens-Mack JH (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol 5:5PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  3. Angenent GC, Franken J, Busscher M, Colombo L, van Tunen AJ (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fpg1. Plant J 4:101–112PubMedCrossRefGoogle Scholar
  4. Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44PubMedCrossRefGoogle Scholar
  5. Becker A, Saedler H, Theissen G (2003) Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol 213:567–572PubMedCrossRefGoogle Scholar
  6. Becker S, Gleissbergy S, Smyth DR (2005) Floral and vegetative morphogenesis in California poppy (Eschscholzia californica Cham.). Int J Plant Sci 166:537–555CrossRefGoogle Scholar
  7. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans Royal Soc London B 274:227–274Google Scholar
  8. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Annals Bot 86:859–909CrossRefGoogle Scholar
  9. Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opion Plant Biol 7:732–736CrossRefGoogle Scholar
  10. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678PubMedCrossRefGoogle Scholar
  11. Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum. Cell 72:85–95PubMedCrossRefGoogle Scholar
  12. Busch A, Gleissberg S (2003) EcFLO, a FLORICAULA-like gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot apex. Planta 217:841–848Google Scholar
  13. Castillo-Davis CI. (2005) The evolution of noncoding DNA: how much junk, how much func? Trends Genet 21:533–536PubMedCrossRefGoogle Scholar
  14. Clark C (1993) Papaveraceae (poppy family). In: Hickman JC (ed) The jepson manual, University of California Press, Berkeley, CAGoogle Scholar
  15. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  16. Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) Floricaula—a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322PubMedCrossRefGoogle Scholar
  17. Cook SA (1962) Genetic system, variation, and adaptation in Eschscholzia californica. Evolution 16:278–299Google Scholar
  18. Decker G, Wanner G, Zenk MH, Lottspeich F (2000) Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 21:3500–3516PubMedCrossRefGoogle Scholar
  19. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940PubMedCrossRefGoogle Scholar
  20. Endress PK (2004) Structure and relationships of basal relictual angiosperms. Aus Syst Bot 17:343–366CrossRefGoogle Scholar
  21. Flanagan CA, Ma H (1994) Spatially and temporally regulated expression of the MADs-Box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26:581–595PubMedCrossRefGoogle Scholar
  22. Frick S, Kramell R, Schmidt J, Fist AJ, Kutchan TM (2005) Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum cultivars. J Nat Prod 68:666–673PubMedCrossRefGoogle Scholar
  23. Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229PubMedCrossRefGoogle Scholar
  24. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560PubMedGoogle Scholar
  25. Groot EP, Sinha N, Gleissberg S (2005) Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae). Plant Mol Biol 58:317–331PubMedCrossRefGoogle Scholar
  26. Huang H, Tudor M, Weiss CA, Hu Y, Ma H (1995) The Arabidopsis MADs-Box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol Biol 28:549–567PubMedCrossRefGoogle Scholar
  27. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999:138–148Google Scholar
  28. Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development. Nature 399:144–148PubMedCrossRefGoogle Scholar
  29. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498.Google Scholar
  30. Kutchan TM (1995) Alkaloid biosynthesis-the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070PubMedCrossRefGoogle Scholar
  31. Lee J, Pedersen H (2001) Stable genetic transformation of Eschscholzia californica expressing synthetic green fluorescent proteins. Biotechnol Prog 17:247–251PubMedCrossRefGoogle Scholar
  32. Lincoln C, Long J, Meyerowitz E (2002) http//, accessed August 27, 2004Google Scholar
  33. Ma H (1994) The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev 8:745–756PubMedGoogle Scholar
  34. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434PubMedCrossRefGoogle Scholar
  35. Ma H (2006) A molecular portrait of Arabidopsis meiosis. In: The Arabidopsis Book. Somerville CR, Meyerowitz EM, Dangl J, Stitt M (eds), American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0009, Scholar
  36. Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101:5–8PubMedCrossRefGoogle Scholar
  37. McInerney JO (1998) GCUA: general codon usage analysis. Bioinformatics 14:372–373Google Scholar
  38. Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordial. Sex Plant Reprod 11:22–28CrossRefGoogle Scholar
  39. Memelink J (2004) Putting the opium in poppy to sleep. Nature Biotech 22:1526–1527CrossRefGoogle Scholar
  40. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292Google Scholar
  41. Nanda KK, Sharma R (1976) Effects of gibberellic acid and cyclic 39,59-adenosine monophosphate on the flowering of Eschscholtzia californica Cham, a qualitative long day plant. Plant Cell Physiol 17:1093–1095Google Scholar
  42. Park S-U, Facchini PJ (2000a) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. J Exp Bot 51:1005–1016CrossRefGoogle Scholar
  43. Park S-U, Facchini PJ (2000b) Agrobacterium-mediated genetic transformation of California poppy, Eschscholzia californica Cham., via somatic embryogenesis. Plant Cell Rep 19:1006–1012CrossRefGoogle Scholar
  44. Park S-U, Min, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128:696–706PubMedCrossRefGoogle Scholar
  45. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203PubMedCrossRefGoogle Scholar
  46. Sato F (2005) RNAi and functional genomics. Plant Biotech 22:431–442Google Scholar
  47. Sato F, Hashimoto T, Hachiya A, Tamura K, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372PubMedCrossRefGoogle Scholar
  48. Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721–733PubMedCrossRefGoogle Scholar
  49. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557PubMedCrossRefGoogle Scholar
  50. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development in Antirrhinum majus. Science 250:931–936Google Scholar
  51. Simon R, Carpenter R, Doyle S, Coen E (1994) Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell 78:99–107PubMedCrossRefGoogle Scholar
  52. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197PubMedCrossRefGoogle Scholar
  53. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedCrossRefGoogle Scholar
  54. Soltis D, Soltis P, Albert V, Oppenheimer D, Frohlich MW, dePamphilis CW, Ma H, Theissen G (2002) Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci 7:22–31PubMedCrossRefGoogle Scholar
  55. Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M (2006) Modifications of the ABC model based on analyses of basal angiosperms. In: Soltis DE, Soltis PS, Leebens-Mack JH (eds) Developmental genetics of the flower. Advances in botanical research series. Elsevier Limited, London. In pressGoogle Scholar
  56. Soltis PS, Soltis DE, Zanis MJ, Kim S (2000) Basal lineages of angiosperms: Relationships and implications for floral evolution. Int J Plant Sci 161:S97–S107Google Scholar
  57. Sommer H, Beltran J-P, Huijser P, Pape H, Lonnig W-E, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613PubMedGoogle Scholar
  58. Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309PubMedCrossRefGoogle Scholar
  59. Trémousaygue D, Garnier L, Bardet C, Dabos P, Hervé C, Lescure B (2003) Internal telomeric repeats and ‘TCP domain’ protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33:957–966PubMedCrossRefGoogle Scholar
  60. Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–562PubMedCrossRefGoogle Scholar
  61. Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig W-E, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704PubMedGoogle Scholar
  62. Wakelin AM, Lister CE, Conner AJ (2003) Inheritance and biochemistry of pollen pigmentation in California poppy (Eschscholzia californica Cham.). Int J Plant Sci 164:867–875CrossRefGoogle Scholar
  63. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209PubMedCrossRefGoogle Scholar
  64. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859PubMedCrossRefGoogle Scholar
  65. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  66. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35–43PubMedCrossRefGoogle Scholar
  67. Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005a) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223CrossRefGoogle Scholar
  68. Zahn LM, Leebens-Mack J, Arrington JM, Hu Y, Landherr L, dePamphilis CW, Becker A, Theissen G, Ma H (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-Box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8:30–45PubMedCrossRefGoogle Scholar
  69. Zahn LM, Leebens-Mack J, DePamphilis CW, Ma H, Theissen G (2005b) To B or not to B a flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered 96:225–240CrossRefGoogle Scholar
  70. Zhang X, Feng B, Zhang Q, Zhang D, Altman N, Ma H (2005) Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis. Plant Mol Biol 58:401–419Google Scholar
  71. Zhao D, Yu Q, Chen C, Ma H (2001) Genetic control of reproductive meristems. In: McManus MT, Veit B (eds) Meristematic tissues in plant growth and development. Academic Press, Sheffield, pp 89–142Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • John E. Carlson
    • 1
  • James H. Leebens-Mack
    • 2
    • 7
  • P. Kerr Wall
    • 2
  • Laura M. Zahn
    • 2
  • Lukas A. Mueller
    • 3
  • Lena L. Landherr
    • 2
  • Yi Hu
    • 2
  • Daniel C. Ilut
    • 3
  • Jennifer M. Arrington
    • 2
    • 4
  • Stephanie Choirean
    • 2
  • Annette Becker
    • 5
  • Dawn Field
    • 6
  • Steven D. Tanksley
    • 3
  • Hong Ma
    • 2
  • Claude W. dePamphilis
    • 2
  1. 1.The School of Forest Resources and Huck Institutes for Life SciencesPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Biology, The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Plant BreedingCornell UniversityIthacaUSA
  4. 4.Department of BiologyRandolph-Macon Woman’s CollegeLynchburgUSA
  5. 5.Evolutionary Developmental Genetics GroupUniversity of BremenBremenGermany
  6. 6.Oxford Centre for Ecology and HydrologyOxfordUK
  7. 7.Department of Plant BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations