Plant Molecular Biology

, Volume 62, Issue 1–2, pp 181–193

Genome-wide investigation on the genetic variations of rice disease resistance genes

  • Sihai Yang
  • Zhumei Feng
  • Xiuyan Zhang
  • Ke Jiang
  • Xinqing Jin
  • Yueyu Hang
  • Jian-Qun Chen
  • Dacheng Tian
Article

Abstract

Exploitation of plant disease resistance (R) gene in breeding programs has been proven to be the most efficient strategy for coping with the threat of pathogens. An understanding of R-gene variation is the basis for this strategy. Here we report a genome-wide investigation on the variation of NBS-LRR-encoding genes, the common type of R genes, between two sequenced rice genomes, Oryza sativa L. var. Nipponbare and 93–11. We show that the allelic nucleotide diversity in 65.0% of 397 least-divergent pairs is not high (0.344% on average), while the remaining 35% display a greater diversity (5.4% on average). The majority of conserved R genes is single-copy and/or located as a singleton. The clustered, particularly the complex-clustered, R-genes contribute greatly to the rich genetic variation. Surprisingly only 11.2% of R-genes have remarkably high ratios of non-synonymous to synonymous rates, which is much less than the 17.4% observed between Arabidopsis genomes. Noticeable “artificially selective sweeping” could be detected in a large proportion of the conserved R-genes, a scenario described in the “arms race” co-evolutionary model. Based on our study, a variation pattern of R-genes is proposed and confirmed by the analysis of R-genes from other rice lines, indicating that the observed variation pattern may be common in all rice lines.

Keywords

Disease resistance genes Genomic comparison Rice Variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11103_2006_9012_MOESM1_ESM.pdf (843 kb)
Supplementary material

References

  1. Allen RL, Bittner-Eddy P, Grenville-Briggs L, Meitz J, Rehmany AP, Rose LE, Beynon JL (2004) Host-Parasite coevolutionary conflict between Arabidopsis and Downy Mildew. Science 306:1957–1960PubMedCrossRefADSGoogle Scholar
  2. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29PubMedGoogle Scholar
  3. Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285PubMedCrossRefGoogle Scholar
  4. Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21(2):177–188PubMedCrossRefGoogle Scholar
  5. Caicedo AL, Schaal BA, Kunkel BN (1999) Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:302–306PubMedCrossRefADSGoogle Scholar
  6. Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA 94:9757–9762PubMedCrossRefADSGoogle Scholar
  7. Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell. 11(3):495–506PubMedCrossRefGoogle Scholar
  8. Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100PubMedCrossRefADSGoogle Scholar
  9. Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607PubMedCrossRefGoogle Scholar
  10. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  11. Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2(7):516–527PubMedCrossRefGoogle Scholar
  12. Hulbert SH Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312CrossRefGoogle Scholar
  13. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487PubMedCrossRefGoogle Scholar
  14. Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci USA 101:10667–10672PubMedCrossRefADSGoogle Scholar
  15. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  16. Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93(21):11746–11750PubMedCrossRefADSGoogle Scholar
  17. Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1:539–559PubMedCrossRefGoogle Scholar
  18. Kuang H, Woo SS, Meyers BC, Nevo E, Michelmor RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894PubMedCrossRefGoogle Scholar
  19. Leach JE, Casiana M, Cruz V, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224PubMedCrossRefGoogle Scholar
  20. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefADSGoogle Scholar
  21. Mauricio R, Stahl E, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance gene RPS2 of Arabidopsis. Genetics 163(2):735–746PubMedGoogle Scholar
  22. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379PubMedCrossRefGoogle Scholar
  23. McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. TRENDS Biotechnol 21:178–182PubMedCrossRefGoogle Scholar
  24. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834PubMedCrossRefGoogle Scholar
  25. Moffat AS (2001) Finding new ways to fight plant diseases. Science 292:2270–2273PubMedCrossRefGoogle Scholar
  26. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  27. Noel L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JD (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11:2099–2111PubMedCrossRefGoogle Scholar
  28. Nurminsky DI, Nurminskaya MV, Aguiar DD, Hartl DL (1998) Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396:572–575PubMedCrossRefADSGoogle Scholar
  29. Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BB, Jones JD, (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91(6):821–832PubMedCrossRefGoogle Scholar
  30. Pink DAC (2002) Strategies using genes for non-durable resistance. Euphytica 124:227–236CrossRefGoogle Scholar
  31. Rozas J, Sánchez-del Barrio JC, Messeguer X, Rozas R, (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  32. Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J␣Biol Chem 277:10555–10561PubMedCrossRefGoogle Scholar
  33. Shen J, Araki H, Chen L, Chen JQ, Tian D (2006) Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172:1243–1250PubMedCrossRefGoogle Scholar
  34. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671PubMedCrossRefADSGoogle Scholar
  35. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. sinauer, sunderland, MassGoogle Scholar
  36. Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullena MD (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872PubMedCrossRefGoogle Scholar
  37. Yu J, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–100PubMedCrossRefADSGoogle Scholar
  38. Zhang L, Li W (2004) Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol 21(2):236–239PubMedCrossRefGoogle Scholar
  39. Zhou T, Wang Y, Chen JQ, Araki H, Jing ZQ, Jiang K, Shen JD, Tian D (2004) Genome-wide identification of NBS genes in rice reveals significant expansion of divergent non-TIR NBS Genes. Mol Genet Gen 406:402–415Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Sihai Yang
    • 1
  • Zhumei Feng
    • 1
  • Xiuyan Zhang
    • 1
  • Ke Jiang
    • 1
  • Xinqing Jin
    • 1
  • Yueyu Hang
    • 2
  • Jian-Qun Chen
    • 1
  • Dacheng Tian
    • 1
  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, Department of BiologyNanjing UniversityNanjingChina
  2. 2.Institute of BotanyJiangsu Province & Chinese Academy of ScienceNanjingChina

Personalised recommendations