Skip to main content
Log in

Degenerated recognition property of a mitochondrial homing enzyme in the unicellular green alga Chlamydomonas smithii

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Target sequence cleavage is the essential step for intron invasion into an intronless allele. DNA cleavage at a specific site is performed by an endonuclease, termed a homing enzyme, which is encoded by an open reading frame within the intron. The recognition properties of them have only been analyzed in vitro, using purified, recombinant homing enzyme and various mutated DNA substrates, but it is unclear whether the homing enzyme behaves similarly in vivo. To answer this question, we determined the recognition properties of I-CsmI in vivo. I-CsmI is a homing enzyme encoded by the open reading frame of the alpha-group I-intron, located in the mitochondrial apocytochrome b gene of the green alga Chlamydomonas smithii. The in vivo recognition properties of it were determined as the frequency of intron invasion into a mutated target site. For this purpose, we utilized hybrid diploid cells developed by crossing alpha-intron-plus C. smithii to intron-minus C. reinhardtii containing mutated target sequences. The intron invasion frequency was much higher than the expected from the in vitro cleavage frequency of the respective mutated substrates. Even the substrates that had very little cleavage in the in vitro experiment were efficiently invaded in vivo, and were accompanied by a large degree of coconversion. Considering the ease of the homing enzyme invading into various mutated target sequences, we propose that the principle bottleneck for lateral intron transmission is not the sequence specificity of the homing enzyme, but instead is limited by the rare occurrence of inter-specific cell fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ble R:

bleomycin resistance

cob :

apocytochrome b

cox1 :

subunit 1 of cytochrome c oxidase

ORF:

open reading frame

PCR:

polymerase chain reaction

spc R:

spectinomycin resistance

References

  • Aagaard C, Awayez MJ, Garrett RA (1997) Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI. Nucl Acids Res 25:1523–1530

    Article  PubMed  CAS  Google Scholar 

  • Beckers MC, Munaut C, Minet A, Matagne RF (1991) The fate of mitochondrial DNAs of mt+ and mt origin in gametes and zygotes of Chlamydomonas. Curr Genet 20:239–243

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Perlman PS (1995) Mechanisms of intron mobility. J␣Biol Chem 270:30237–30240

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucl Acids Res 25:3379–3388

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Harris EH, Burkhart BD, Lamerson PM, Gillham NW (1987) Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas. Proc Natl Acad Sci USA 84:2391–2395

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bussieres J, Lemieux C, Lee RW, Turmel M (1996) Optional elements in the chloroplast DNAs of Chlamydomonas eugametos and C. moewusii: unidirectional gene conversion and co-conversion of adjacent markers in high-viability crossses. Curr Genet 30:356–365

    Article  PubMed  CAS  Google Scholar 

  • Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucl Acids Res 29:3757–3774

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Qiu YL, Kuhlman P, Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14244–14249

    Article  PubMed  CAS  ADS  Google Scholar 

  • Colleaux L, Michel-Wolwertz MR, Matagne RF, Dujon B (1990) The apocytochrome b gene of Chlamydomonas smithii contains a mobile intron related to both Saccharomyces and Neurospora introns. Mol Gen Genet 223:288–296

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Garrett RA, Belfort M (1994) Purification and characterization of two forms of I-DmoI, a thermophilic site-specific endonuclease encoded by an archaeal intron. J␣Biol Chem 269:28885–28892

    PubMed  CAS  Google Scholar 

  • Geese WJ, Kwon YK, Wen X, Waring RB (2003) In vitro analysis of the relationship between endonuclease and maturase activities in the bi-functional group I intron-encoded protein, I-AniI. Eur J Biochem 270:1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Gillham NW (1978) Organelle heredity. Raven Press, New York

    Google Scholar 

  • Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci USA 96:13880–13885

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gormman DS, Levine RP (1965) Cytochrome F and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54:1665–1669

    Article  ADS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook. Academic Press, New York

    Google Scholar 

  • Harris EH, Burkhart BD, Gillham NW, Boynton JE (1989) Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123:281–292

    PubMed  CAS  Google Scholar 

  • Huang YJ, Parker MM, Belfort M (1999) Role of exonucleolytic degradation in group I intron homing in phage T4. Genetics 153:1501–1512

    PubMed  CAS  Google Scholar 

  • Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa S, Bessho Y, Higashijima K, Shirouzu M, Yokoyama S, Watanabe KI, Ohama T (2005) Adaptation of intronic homing endonuclease for successful horizontal transmission. FEBS J 272:2487–2496

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM (1989) Infectious introns. Cell 56:323–326

    Article  PubMed  CAS  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–448

    Article  CAS  Google Scholar 

  • Ma DP, King YT, Kim Y, Luckett WS Jr. (1992) The group I intron of apocytochrome b gene from Chlamydomonas smithii encodes a site-specific endonuclease. Plant Mol Biol 18:1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Martin NC, Goodenough UW (1975) Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol 67: 587–605

    Article  PubMed  CAS  Google Scholar 

  • Matagne RF, Rongvaux D, Loppes R (1988) Transmission of mitochondrial DNA in cross involving diploid gametes homozygous or heterozygous for the mating-type locus in Chlamydomonas. Mol Gen Genet 214:257–262

    Article  CAS  Google Scholar 

  • Matagne RF, Remacle C, Dinant M (1991) Cytoduction in Chlamydomonas reinhardtii. Proc Natl Acad Sci (USA) 88:7447–7450

    Article  CAS  ADS  Google Scholar 

  • Monteilhet C, Dziadkowiec D, Szczepanek T, Lazowska J (2000) Purification and characterization of the DNA cleavage and recognition site of I-ScaI mitochondrial group I intron encoded endonuclease produced in Escherichia coli. Nucl Acids Res 28:1245–1251

    Article  PubMed  CAS  Google Scholar 

  • Muscarella DE, Vogt VM (1989) A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell 56:443–454

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Aoyama H, van Woesik R (2003) Strict paternal transmission of mitochondrial DNA of Chlamydomonas species is explained by selection against maternal nucleoids. Protoplasma 221:205–210

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Sugiyama J (1995) A common group I intron between a plant parasitic fungus and its host. Mol Biol Evol 12:883–886

    PubMed  CAS  Google Scholar 

  • Pellenz S, Harington A, Dujon B, Wolf K, Schafer B (2002) Characterization of the I-Spom I endonuclease from fission yeast: insights into the evolution of a group I intron-encoded homing endonuclease. J Mol Evol 55:302–313

    Article  PubMed  CAS  Google Scholar 

  • Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236:235–244

    Article  PubMed  CAS  Google Scholar 

  • Remacle C, Matagne RF (1993) Transmission, recombination and conversion of mitochondrial markers in relation to the mobility of a group I intron in Chlamydomonas. Curr Genet 23:518–525

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Takahashi Y, Utsumi K, Yamamoto Y, Hatano A, Satoh K (1996) Genetic engineering of the processing site of D1 precursor protein of photosystem II reaction center in Chlamydomonas reinhardtii. Plant Cell Physiol. 37:161–168

    PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Cote V, Lemieux C (1997) Evolutionarily conserved and functionally important residues in the I-CueI homing endonuclease. Nucl Acids Res 25:2610–2619

    Article  PubMed  CAS  Google Scholar 

  • Watanabe KI, Ehara M, Inagaki Y, Ohama T (1998) Distinctive origins of group I introns found in the COXI genes of three green algae. Gene 213:1–7

    Article  PubMed  CAS  MATH  Google Scholar 

  • Wernette CM, Saldahna R, Perlman PS, Butow RA (1990) Purification of a site-specific endonuclease, I-Sce II, encoded by intron 4 alpha of the mitochondrial coxI gene of Saccharomyces cerevisiae. J Biol Chem 265:18976–18982

    PubMed  CAS  Google Scholar 

  • Wernette CM (1998) Structure and activity of the mitochondrial intron-encoded endonuclease, I-SceIV. Biochem Biophys Res Commun 248:127–133

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki T, Kurokawa S, Watanabe KI, Ikuta K, Ohama T (2005) Shared molecular characteristics of successfully transformed mitochondrial genomes in Chlamydomonas reinhardtii. Plant Mol. Biol. 58:515–527

    Article  PubMed  CAS  Google Scholar 

  • Zamora I, Feldman JL, Marshall WF (2004) PCR-based assay for mating type and diploidy in Chlamydomonas. Biotechniques 37:534–536

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Engs. C. Nakagoshi and S. Minakuchi (KUT) for their technical support in making point mutation bearing DNA-constructs and Ms. Mariya Takeuchi for her encouragement to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ohama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurokawa, S., Yamasaki, T., Komatsu, T. et al. Degenerated recognition property of a mitochondrial homing enzyme in the unicellular green alga Chlamydomonas smithii . Plant Mol Biol 62, 141–150 (2006). https://doi.org/10.1007/s11103-006-9009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9009-y

Keywords

Navigation