Plant Molecular Biology

, Volume 61, Issue 4–5, pp 799–815 | Cite as

The 73 kD Subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis

  • Ruqiang Xu
  • Hongwei Zhao
  • Randy D. Dinkins
  • Xiaowen Cheng
  • George Carberry
  • Qingshun Quinn Li
Article

Abstract

The cleavage and polyadenylation specificity factor (CPSF) is an important multi-subunit component of the mRNA 3′-end processing apparatus in eukaryotes. The Arabidopsis genome contains five genes encoding CPSF homologues (AtCPSF160, AtCPSF100, AtCPSF73-I, AtCPSF73-II and AtCPSF30). These CPSF homologues interact with each other in a way that is analogous to the mammalian CPSF complex or their yeast counterparts, and also interact with the Arabidopsis poly(A) polymerase (PAP). There are two CPSF73 like proteins (AtCPSF73-I and AtCPSF73-II) that share homology with the 73 kD subunit of the mammalian CPSF complex. AtCPSF73-I appears to correspond to the functionally characterized mammalian CPSF73 and its yeast counterpart. AtCPSF73-II was identified as a novel protein with uncharacterized protein homologues in other multicellular organisms, but not in yeast. Both of the AtCPSF73 proteins are targeted in the nucleus and were found to interact with AtCPSF100. They are also essential since knockout or knockdown mutants are lethal. In addition, the expression level of AtCPSF73-I is critical for Arabidopsis development because overexpression of AtCPSF73-I is lethal. Interestingly, transgenic plants carrying an additional copy of the AtCPSF73-I gene, that is, the full-length cDNA under the control of its native promoter, appeared normal but were male sterile due to delayed anther dehiscence. In contrast, we previously demonstrated that a mutation in the AtCPSF73-II gene was detrimental to the genetic transmission of female gametes. Thus, two 73 kD subunits of the AtCPSF complex appear to have special functions during flower development. The important roles of mRNA 3′-end processing machinery in modulating plant development are discussed.

Keywords

mRNA 3′-end processing Polyadenylation CPSF complex Male sterility 

Abbreviations

AD

activation domain

BD

DNA binding domain

CF

cleavage factor

CPSF

cleavage and polyadenylation specificity factor

CstF

cleavage stimulatory factor

CTD

C-terminal domain

DEX

dexamethasone

GFP

green fluorescence protein

GST

glutathione transferase

GUS

β-glucuronidase

PAP

poly(A) polymerase

RNAi

RNA interference

RNAP II

RNA polymerase II

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.doc (21 kb)

References

  1. Addepalli, B, Meeks, LR, Forbes, KP, Hunt, AG 2004Novel alternative splicing of mRNAs encoding poly(A) polymerases in ArabidopsisBiochim Biophys Acta1679117128PubMedGoogle Scholar
  2. Aoyama, T, Chua, NH 1997A glucocorticoid-mediated transcriptional induction system in transgenic plantsPlant J11605612PubMedCrossRefGoogle Scholar
  3. Bai, C, Tolias, PP 1996Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger proteinsMol Cell Biol1666616667PubMedGoogle Scholar
  4. Bai, CY, Tolias, PP 1998Drosophila clipper/CPSF 30 K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clustersNucleic Acids Res2615971604PubMedCrossRefGoogle Scholar
  5. Barabino, SML, Hübner, W, Jenny, A, Minvielle-Sebastia, L, Keller, W 1997The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteinsGenes Dev1117031716PubMedGoogle Scholar
  6. Barabino, SML, Ohnacker, M, Keller, W 2000Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAsEMBO J1937783787PubMedCrossRefGoogle Scholar
  7. Belostotsky, DA, Meagher, RB 1993Differential organ-specific expression of 3 poly(a)-binding-protein genes from Arabidopsis thalianaProc Natl Acad Sci USA9066866690PubMedCrossRefGoogle Scholar
  8. Bentley, D 2002The mRNA assembly line: transcription and processing machines in the same factoryCurr Opin Cell Biol14336342PubMedCrossRefGoogle Scholar
  9. Calzado, MA, Sancho, R, Muñoz, E 2004Human immunodeficiency virus type 1 Tat increases the expression of cleavage and polyadenylation specificity factor 73-kilodalton subunit modulating cellular and viral expressionJ Virol7868466854PubMedCrossRefGoogle Scholar
  10. Cheng, Y, Kato, N, Wang, W, Li, J, Chen, X 2003Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thalianaDev Cell45366PubMedCrossRefGoogle Scholar
  11. Dantonel, JC, Murthy, KGK, Manley, JL, Tora, L 1997Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNANature389399402PubMedCrossRefGoogle Scholar
  12. Dass, B, Attaya, EN, Wallace, A, MacDonald, CC 2001Overexpression of the CstF-64 and CPSF-160 polyadenylation protein messenger RNAs in mouse male germ cellsBiol Reprod6417221729PubMedCrossRefGoogle Scholar
  13. Delaney KJ, Xu R, Zhang J, Li QQ, Yun K-Y, Falcone DL, Hunt AG (2006) Calmodulin interacts with and regulates the RNA-binding activity of an arabidopsis polyadenylation factor subunit. Plant Physiol 140(4), in press>Google Scholar
  14. Dickson, KS, Bilger, A, Ballantyne, S, Wickens, MP 1999The cleavage and Polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylationMol Cell Biol1957075717PubMedGoogle Scholar
  15. Dinkins, RD, Conn, HM, Dirk, LMA, Williams, MA, Houtz, RL 2003The Arabidopsis thaliana Peptide Deformylase 1 protein is localized to both mitochondria and chloroplastsPlant Sci165751758CrossRefGoogle Scholar
  16. Dominski, Z, Yang, XC, Marzluff, WF 2005aThe polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processingCell1233748CrossRefGoogle Scholar
  17. Dominski, Z, Yang, XC, Purdy, M, Wagner, EJ, Marzluff, WF 2005bA CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100Mol Cell Biol2514891500CrossRefGoogle Scholar
  18. Elliott, BJ, Dattaroy, T, Meeks-Midkiff, LR, Forbes, KP, Hunt, AG 2003An interaction between an Arabidopsis poly(A) polymerase and a homologue of the 100 kDa subunit of CPSF Plant MolBiol51373384Google Scholar
  19. Fields, S, Song, O 1989A novel genetic system to detect protein–protein interactionsNature340245246PubMedCrossRefGoogle Scholar
  20. Gietz, RD, Triggs-Raine, B, Robbins, A, Graham, KC, Woods, RA 1997Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid systemMol Cell Biochem1726779PubMedCrossRefGoogle Scholar
  21. Gutierrez, RA, MacIntosh, GC, Green, PJ 1999Current perspectives on mRNA stability in plants: multiple levels and mechanisms of controlTrends Plant Sci4429438PubMedCrossRefGoogle Scholar
  22. Hunt, AG, Meeks, LR, Forbes, KP, Das Gupta, J, Mogen, BD 2000Nuclear and chloroplast poly(A) polymerases from plants share a novel biochemical propertyBiochem Biophys Res Commun272174181PubMedCrossRefGoogle Scholar
  23. James, P, Halladay, J, Craig, EA 1996Genomic libraries and a host strain designed for a highly efficient two-hybrid selection in yeastGenetics14414251436PubMedGoogle Scholar
  24. Jenny, A, Hauri, HP, Keller, W 1994Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunitMol Cell Biol1481838190PubMedGoogle Scholar
  25. Jenny, A, Minvielle-Sebastia, L, Preker, PJ, Keller, W 1996Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast Polyadenylation factor IScience27415141517PubMedCrossRefGoogle Scholar
  26. Juge, F, Zaessinger, S, Temme, C, Wahle, E, Simonelig, M 2002Control of poly(A) polymerase level is essential to cytoplasmic Polyadenylation and early development in DrosophilaEMBO J2166036613PubMedCrossRefGoogle Scholar
  27. Keller, W, Nienroth, S, Lang, KM, Christofori, G 1991Cleavage and Polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAAEMBO J1042414249PubMedGoogle Scholar
  28. Kuersten, S, Goodwin, EB 2003The power of the 3′UTR: translational control and developmentNat Rev Genet4626637PubMedCrossRefGoogle Scholar
  29. Kyburz, A, Sadowski, M, Ditchtl, B, Keller, W 2003The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formationNuc Acids Res3139363945CrossRefGoogle Scholar
  30. Li, QQ, Hunt, AG 1997The polyadenylation of RNA in plantsPlant Physiol115321326PubMedCrossRefGoogle Scholar
  31. Li, QQ, Das Gupta, J, Hunt, AG 1998Polynucleotide phosphorylase is a component of a novel plant poly(A) polymeraseJ Biol Chem2731753917543PubMedCrossRefGoogle Scholar
  32. Li, YZ, Chen, ZY, Wang, WR, Baker, CC, Krug, RM 2001The3′-end-processing factor CPSF is required for the splicing of single-intron pre-mRNAs in vivoRNA7920931PubMedCrossRefGoogle Scholar
  33. Loke, JC, Stahlberg, EA, Strenski, DG, Haas, BJ, Wood, PC, Li, QQ 2005Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structuresPlant Physiol13814571468PubMedCrossRefGoogle Scholar
  34. Murthy, KGK, Manley, JL 1992Characterization of the multisubunit cleavage-polyadenylation specificity factor from Calf thymusJ Biol Chem2671480414811PubMedGoogle Scholar
  35. Ohnacker, M, Barabino, SM, Preker, PJ, Keller, W 2000The WD-repeat protein Pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end processing complexEMBO J193747PubMedCrossRefGoogle Scholar
  36. Proudfoot, N 2004New perspectives on connecting messenger RNA 3′ end formation to transcriptionCurr Opin Cell Biol16272276PubMedCrossRefGoogle Scholar
  37. Ryan, K, Murthy, KGK, Kaneko, S, Manley, JL 2002requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3′ cleavageMol Cell Biol2216841692PubMedCrossRefGoogle Scholar
  38. Ryan, K, Calvo, O, Manley, JL 2004Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonucleaseRNA10565573PubMedCrossRefGoogle Scholar
  39. Sanders, PM, Lee, PY, Biesgen, C, Boone, JD, Beals, TP, Weiler, EW, Goldberg, RB 2000The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathwayPlant Cell1210411061PubMedCrossRefGoogle Scholar
  40. Schmid, M, Davison, TS, Henz, SR, Pape, UJ, Demar, M, Vingron, M, Schölkopf, B, Weigel, D, Lohmann, JU 2005A gene expression map of Arabidopsis thaliana developmentNat Genet37501506PubMedCrossRefGoogle Scholar
  41. Simpson, GG, Dijkwel, PP, Quesada, V, Hemderson, I, Dean, C 2003FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transitionCell113777787PubMedCrossRefGoogle Scholar
  42. Takagaki, Y, Seipelt, RL, Peterson, ML, Manley, JL 1996The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B-cell differentiationCell87941952PubMedCrossRefGoogle Scholar
  43. Tarui, Y, Minamikawa, T 1989Poly(A) polymerase from Vigna unguiculata seedlings - a bifunctional enzyme responsible for both poly(A)-polymerizing and poly(A)-hydrolyzing activitiesEur J Biochem186591596PubMedCrossRefGoogle Scholar
  44. Vinciguerra, P, Stutz, F 2004mRNA export: an assembly line from genes to nuclear poresCurr Opin Cell Biol16285292PubMedCrossRefGoogle Scholar
  45. Wesley, SV, Helliwell, CA, Smith, NA, Wang, MB, Rouse, DT, Liu, Q, Gooding, PS, Singh, SP, Abbott, D, Stoutjesdijk, PA, Robinson, SP, Gleave, AP, Green, AG, Waterhouse, PM 2001Construct design for efficient, effective and high-throughput gene silencing in plantsPlant J27581590PubMedCrossRefGoogle Scholar
  46. Xu, R, Li, QQ 2003A RING-H2 zinc finger protein gene RIE1 is essential for seed development in ArabidopsisPlant Mol Biol533750PubMedCrossRefGoogle Scholar
  47. Xu, RQ, Ye, X, Li, QQ 2004AtCPSF73-II gene encoding an Arabidopsis homolog of CPSF 73 kDa subunit is critical for early embryo developmentGene3243545PubMedCrossRefGoogle Scholar
  48. Yao, YL, Song, LH, Katz, Y, Galili, G 2002Cloning and characterization of Arabidopsis homologues of the animal CstF complex that regulate 3′ mRNA cleavage and polyadenylationJ Exp Bot5322772278PubMedCrossRefGoogle Scholar
  49. Zarudnaya, M, Kolomiets, IM, Hovorun, DM 2002What nuclease cleaves pre-mRNA in the process of Polyadenylation?IUBMB Life542731PubMedCrossRefGoogle Scholar
  50. Zhao, J, Hyman, L, Moore, CL 1999Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesisMicrobiol Mol Biol Rev63405445PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Ruqiang Xu
    • 1
  • Hongwei Zhao
    • 1
  • Randy D. Dinkins
    • 3
  • Xiaowen Cheng
    • 2
  • George Carberry
    • 1
  • Qingshun Quinn Li
    • 1
  1. 1.Department of BotanyMiami UniversityOxfordUSA
  2. 2.Department of MicrobiologyMiami UniversityOxfordUSA
  3. 3.USDA–ARS Forage-Animal Production Research UnitLexingtonUSA

Personalised recommendations