Plant Molecular Biology

, Volume 61, Issue 4–5, pp 733–746 | Cite as

Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis

  • Roman A. Volkov
  • Irina I. Panchuk
  • Phillip M. Mullineaux
  • Friedrich Schöffl


The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H2O2, is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H2O2 in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37°C) or by treatment with H2O2, butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H2O2 is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H2O2-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H2O2 is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H2O2 was unable to induce this complex suggesting that H2O2 is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37°C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling.


Ascorbate peroxidase DPI Heat shock factor Heat shock protein Hydrogen peroxide Oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.doc (52 kb)
Supplementary material
supp1.eps (10.2 mb)
Supplementary material
supp2.eps (2.5 mb)
Supplementary material
supp3.eps (2 mb)
Supplementary material


  1. Agius, SC, Bykova, NV, Igamberdiev, AU, Moller, IM 1998The internal rotenone-insensitive NADPH dehydrogenase contributes to malate oxidation by potato tuber and pea leaf mitochondriaPhysiol Plant104329336CrossRefGoogle Scholar
  2. Ahn, SG, Thiele, DJ 2003Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stressGenes Development17516528PubMedCrossRefGoogle Scholar
  3. Allen, RG, Tresini, M 2000Oxidative stress and gene regulationFree Radic Biol Med28463499PubMedCrossRefGoogle Scholar
  4. Asada, K 1999The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photonsAnnu Rev Plant Physiol Plant Mol Biol50601639PubMedCrossRefGoogle Scholar
  5. Banzet, N, Richaud, C, Deveaux, Y, Kazmaier, M, Gagnon, J, Triantaphylides, C 1998Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cellsPlant J13519527PubMedCrossRefGoogle Scholar
  6. Bolwell, GP 1999Role of active oxygen species and NO in plant defense responsesCurr Opin Plant Biol2287294PubMedCrossRefGoogle Scholar
  7. Bolwell, GP, Wojtaszek, P 1997Mechanisms for the generation of reactive oxygen species in plant defense: a broad perspectivePhysiol Mol Plant Pathol51347366CrossRefGoogle Scholar
  8. Boston, RS, Viitanen, PV, Vierling, E 1996Molecular chaperons and protein folding in plantsPlant Mol Biol32191222PubMedCrossRefGoogle Scholar
  9. Bowler, C, Montagu, M, Inzé, D 1992Superoxide dismutases and stress toleranceAnnu Rev Plant Physiol Plant Mol Biol4383116CrossRefGoogle Scholar
  10. Bowler, C, Fluhr, R 2000The role of calcium and activated oxygens as signals for controlling cross-toleranceTrends Plant Sci5241245PubMedCrossRefGoogle Scholar
  11. Bradford, MM 1976A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254PubMedCrossRefGoogle Scholar
  12. Busch, W, Wunderlich, M, Schöffl, F 2005Identification of novel Heat Shock Factor dependent genes and biochemical pathways in Arabidopsis thaliana Plant J41114PubMedCrossRefGoogle Scholar
  13. Chen, Z, Silva, H, Klessig, RF 1993Active oxygen species in the induction of plant systemic acquired resistance by SAScience26218831886PubMedGoogle Scholar
  14. Clarke, A, Desikan, R, Hurst, RD, Hancock, JT, Neill, SJ 2000NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension culturesPlant J24667677PubMedCrossRefGoogle Scholar
  15. Dat, JF, Foyer, CH, Scott, IM 1998Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlingsPlant Physiol11814551461PubMedCrossRefGoogle Scholar
  16. Dat, J, Vandenbeele, S, Vranova, E, Montagu, M, Inzé, D, Breusegm, F 2000Dual action of the active oxygen species during plant stress responsesCell Mol Life Sci57779795PubMedCrossRefGoogle Scholar
  17. Davidson, JF, Schiestl, RH 2001Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae Mol Cell Biol2184838489PubMedCrossRefGoogle Scholar
  18. Davletova, S, Rizhsky, L, Liang, H, Shengqiang, Z, Oliver, DJ, Coutu, J, Shulaev, V, Schlauch, K, Mittler, R 2005Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis Plant Cell17268281PubMedCrossRefGoogle Scholar
  19. Desikan, R, Clarke, A, Hancock, JT, Neill, SJ 1999H2O2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension culturesJ Exp Bot5018631866CrossRefGoogle Scholar
  20. Desikan, R, Burnett, EC, Hancock, JT, Neill, SJ 1998Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension culturesJ Exp Bot4917671771CrossRefGoogle Scholar
  21. Desikan, R, Hancock, JT, Coffey, MJ, Neill, SJ 1996Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzymeFEBS Lett382213217PubMedCrossRefGoogle Scholar
  22. Desikan, R, Mackerness, SAH, Hancock, JT, Neill, SJ 2001Regulation of the Arabidopsis transcriptome by oxidative stressPlant Physiol127159172PubMedCrossRefGoogle Scholar
  23. Engel J (1997) Signifikante Schule der schlichten Statistik, Filander Verlag, FürthGoogle Scholar
  24. Finkel, T, Holbrook, NJ 2000Oxidants, oxidative stress and the biology of ageingNature408239247PubMedCrossRefGoogle Scholar
  25. Foyer, CH, Lopez-Delgado, H, Dat, JF, Scott, IM 1997Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalingPlant Physiol100241254CrossRefGoogle Scholar
  26. Fryer, MJ, Ball, L, Oxborough, K, Karpinski, S, Mullineaux, PM, Baker, NR 2003Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leavesPlant J33691705PubMedCrossRefGoogle Scholar
  27. Grant, JJ, Yun, B.-W, Loake, GJ 2000Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activityPlant J24569582PubMedCrossRefGoogle Scholar
  28. Hensold, JO, Hunt, CR, Calderwood, SK, Housman, DE, Kingston, RE 1990DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cellsMol Cell Biol1016001608PubMedGoogle Scholar
  29. Hihara, Y, Kamei, A, Kanehisa, M, Kaplan, A, Ikeuchi, M 2001DNA microarray analysis of cyanobacterial gene expression during acclimation to high lightPlant Cell13793806PubMedCrossRefGoogle Scholar
  30. Hübel, A, Schöffl, F 1994Arabidopsis heat shock factor: Isolation and characterization of the gene and the recombinant proteinPlant Mol Biol26353362PubMedCrossRefGoogle Scholar
  31. Jaenicke, R, Creighton, TE 1993Junior chaperonesCurr Biol3234235PubMedCrossRefGoogle Scholar
  32. Jakob, U, Buchner, J 1994Assisting spontaneity: the role of HSP90 and smHSPs as molecular chaperonesTrends Biochem Sci19205211PubMedCrossRefGoogle Scholar
  33. Jurivich, DA, Sistonen, L, Kroes, RA, Morimoto, RI 1992Effect of sodium salicylate on the human heat shock responseScience25512431245PubMedGoogle Scholar
  34. Keller, T, Damude, HG, Werner, D, Doerner, P, Dixon, RA, Lamb, C 1998A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifsPlant Cell10255266PubMedCrossRefGoogle Scholar
  35. Kovtun, Y, Chiu, W-L, Tena, G, Sheen, J 2000Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plantsProc Natl Acad Sci USA9729402945PubMedCrossRefGoogle Scholar
  36. Larkindale, J, Knight, MR 2002Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acidPlant Physiol128682695PubMedCrossRefGoogle Scholar
  37. Lee, JH, Hübel, A, Schöffl, F 1995Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermal tolerance in transgenic Arabidopsis Plant J8603612PubMedCrossRefGoogle Scholar
  38. Lee, BH, Won, SH, Lee, HS, Miyao, M, Chung, WI, Kim, IJ, Jo, J 2000Expression of the chloroplast-localized small heat shock protein by oxidative stress in riceGene245283290PubMedCrossRefGoogle Scholar
  39. Levine, A, Tenhaken, R, Dixon, R, Lamb, C 1994H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance responseCell79583593PubMedCrossRefGoogle Scholar
  40. Lohmann, C, Eggers-Schumacher, G, Wunderlich, M, Schöffl, F 2004Two different heat shock transcription factors regulate immediate early expression of stress genes in ArabidopsisMol Gen Genom2711121CrossRefGoogle Scholar
  41. Manalo, DJ, Liu, AY-C 2001Resolution, detection, and characterization of redox conformers of human HSF1J Biol Chem2762355423561PubMedCrossRefGoogle Scholar
  42. Mittler, R 2002Oxidative stress, antioxidants and stress toleranceTrends Plant Sci7405410PubMedCrossRefGoogle Scholar
  43. Moller, IM 2001Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen speciesAnnu Rev Plant Physiol Plant Mol Biol52561591PubMedCrossRefGoogle Scholar
  44. Morimoto, RI 1998Regulation of the heat shock response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulatorsGenes Development1237883769PubMedGoogle Scholar
  45. Morré, DJ 2002Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donorAntioxid Redox Signal4207212PubMedCrossRefGoogle Scholar
  46. Murashige, T, Skoog, F 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol Plant15437497CrossRefGoogle Scholar
  47. Neill, S, Desikan, R, Clarke, A, Hancock, J 1999H202 signaling in plant cellsSmallwood, MFCalvert, CMBowels, DJ eds. Plant responses to environmental stressBIOS Sci Publ LtdOxford5964Google Scholar
  48. Noctor, G, Foyer, CH 1998Ascorbate and glutathione: keeping active oxygen under controlAnnu Rev Plant Physiol Plant Mol Biol49249279PubMedCrossRefGoogle Scholar
  49. Nover, L, Bharti, K, Döring, P, Mishra, S, Ganguli, A, Scharf, K-D 2001Arabidopsis and the Hsf world: How many heat stress transcription factors do we need?Cell Stress Chaperones6177189PubMedGoogle Scholar
  50. O’Donnell, VB, Smith, GC, Jones, OT 1994Involvement of phenyl radicals in iodonium inhibition of flavoenzymesMol Pharmacol46778785PubMedGoogle Scholar
  51. Panchuk, II, Volkov, RA, Schöffl, F 2002Heat stress and heat shock transcription factor dependent expression and activity of ascorbate peroxidase in Arabidopsis Plant Physiol129838853PubMedCrossRefGoogle Scholar
  52. Panikulangara, TJ, Eggers-Schumacher, G, Wunderlich, M, Stransky, H, Schöffl, F 2004Galactinol synthase 1, a novel heat-inducible and HSF-target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis Plant Physiol13631483158PubMedCrossRefGoogle Scholar
  53. Pnuelli, L, Liang, H, Rozenberg, M, Mittler, R 2003Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plantsPlant J34185201Google Scholar
  54. Prändl, R, Hinderhofer, K, Eggers-Schumacher, G, Schöffl, F 1998HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plantsMol Gen Genet258269278PubMedCrossRefGoogle Scholar
  55. Puntarulo, S, Sanchez, RA, Boveris, A 1988Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germinationPlant Physiol86626630PubMedCrossRefGoogle Scholar
  56. Rizhsky, L, Davletova, S, Liang, H, Mittler, R 2004The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis J Biol Chem2791173611743PubMedCrossRefGoogle Scholar
  57. Rossel, JB, Wilson, IW, Pogson, BJ 2002Global changes in gene expression in response to high light in Arabidopsis Plant Physiol13011091120PubMedCrossRefGoogle Scholar
  58. Royall, JA, Ischiropoulos, H 1993Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cellsArch Biochem. Biophys302348355PubMedCrossRefGoogle Scholar
  59. Samuel, MA, Miles, GP, Ellis, BE 2000Ozone treatment rapidly activates MAP kinase signalling in plantsPlant J22367376PubMedCrossRefGoogle Scholar
  60. Scharf, KD, Siddique, M, Vierling, E 2001The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (Acd proteins)Cell Stress Chaperones6225237PubMedGoogle Scholar
  61. Schöffl, F, Prändl, R, Reindl, A 1998Regulation of the heat-shock responsePlant Physiol11711351141PubMedCrossRefGoogle Scholar
  62. Storozhenko, S, Pauw, P, Montagu, M, Inzé, D, Kushnir, S 1998The heat-shock element is a functional component of the Arabidopsis APX1 gene promoterPlant Physiol11810051014PubMedCrossRefGoogle Scholar
  63. Sugiyama, K, Izawa, S, Yoshiharu, I 2000The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccaromyces cerevisiae J Biol Chem2751553515540PubMedCrossRefGoogle Scholar
  64. Torres, MA, Onuchi, H, Hamada, S, Machida, C, Hammond-Kosack, KE, Jones, JDG 1998Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox)Plant J14365370PubMedCrossRefGoogle Scholar
  65. Vacca, RA, Pinto, MC, Valenti, D, Passarella, S, Marra, E, Gara, L 2004Production of Reactive Oxygen Species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cellsPlant Physiol13411001112PubMedCrossRefGoogle Scholar
  66. Vandenabeele, S, Kelen, K, Dat, J, Gadjev, I, Boonefaes, T, Morsa, S, Rottiers, P, Slooten, L, Montagu, M, Zabeau, M, Inzé, D, Breusegem, F 2003A comprehensive analysis of hydrogen peroxide-induced gene expression in tobaccoProc Natl Acad Sci USA1001611316118PubMedCrossRefGoogle Scholar
  67. Vallelian-Bindschedler, L, Schweizer, P, Mosinger, E, Metraux, JP 1998Heat-induced resistance in barley to powdery mildew (Blumeria graminis f. sp. hordei) is associated with a burst of active oxygen speciesMol Plant Pathol52185199CrossRefGoogle Scholar
  68. Vierling, E 1991The roles of heat shock proteins in plantsAnnu Rev Plant Physiol Mol Biol42579620CrossRefGoogle Scholar
  69. Volkov, RA, Panchuk, II, Schöffl, F 2003Heat-stress dependent and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCRJ Exp Bot5423432349PubMedCrossRefGoogle Scholar
  70. Vranova, E, Inzé, D, Breusegem, F 2002Signal transduction during oxidative stressJ Exp Bot5312271236PubMedCrossRefGoogle Scholar
  71. Wunderlich, M, Werr, W, Schöffl, F 2003Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion constructPlant J35442451PubMedCrossRefGoogle Scholar
  72. Zhong, M, Orosz, A, Wu, C 1998Direct sensing of heat shock and oxidation by Drosophila heat shock transcription factorMol Cell2101108PubMedCrossRefGoogle Scholar
  73. Zou, J, Guo, Y, Guettouche, T, Smith, DF, Voellmy, R 1998Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1Cell94471480PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Roman A. Volkov
    • 1
    • 3
  • Irina I. Panchuk
    • 1
    • 3
  • Phillip M. Mullineaux
    • 2
  • Friedrich Schöffl
    • 1
  1. 1.Zentrum für Molekularbiologie der Pflanzen – Allgemeine GenetikUniversität TübingenTübingenGermany
  2. 2.Department of Biological SciencesUniversity of EssexColchester, EssexUK
  3. 3.Department of Molecular Genetics and BiotechnologyUniversity of ChernivtsyUkraine

Personalised recommendations