Advertisement

Plant Molecular Biology

, Volume 59, Issue 2, pp 323–343 | Cite as

Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays

  • Jinglan Zhang
  • Carl Simmons
  • Nasser Yalpani
  • Virginia Crane
  • Heather Wilkinson
  • Michael Kolomiets
Article

Abstract

The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in α,β-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes. Southern blot analysis and mapping of individual OPR genes to maize chromosomes using oat maize chromosome addition lines provides independent confirmation of this number of OPR genes in maize. A survey of massively parallel signature sequencing (MPSS) assays revealed that transcripts of each OPR gene accumulate differentially in diverse organs of maize plants suggesting distinct biological functions. Similarly, RNA blot analysis revealed that distinct OPR genes are differentially regulated in response to stress hormones, wounding or pathogen infection. ZmOPR1 and/or ZmOPR2 appear to function in defense responses to pathogens because they are transiently induced by salicylic acid (SA), chitooligosaccharides, and by infection with Cochliobolus  carbonum, Cochliobolus  heterostrophus and Fusarium  verticillioides, but not by wounding. In contrast to these two genes, transcript levels of ZmOPR6 and ZmOPR7 and/or ZmOPR8 are highly induced by wounding or treatments with the wound-associated signaling molecules JA, ethylene and abscisic acid. However, accumulation of ZmOPR6 and ZmOPR7/8 mRNAs was not upregulated by SA treatments or by pathogen infection suggesting specific involvement in the wound-induced defense responses. None of the treatments induced transcripts of ZmOPR3, 4, or 5.

Keywords

Cochliobolus carbonum Cochliobolus heterostrophus Fusarium verticillioides jasmonic acid maize old yellow enzymes wounding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G.K., Jwa, N.S., Shibato, J., Han, O., Iwahashi, H., Rakwal, R. 2003Diverse environmental cues transiently regulate OsOPR1 of the “octadecanoid pathway” revealing its importance in rice defense/stress and developmentBiochem. Biophys. Res. Commun.31010731082CrossRefPubMedGoogle Scholar
  2. Agrawal, G.K., Tamogami, S., Han, O., Iwahashi, H., Rakwal, R. 2004Rice octadecanoid pathwayBiochem. Biophys. Res. Commun.317115CrossRefPubMedGoogle Scholar
  3. Ananiev, E.V., Riera-Lizarazu, O., Rines, H.W., Phillips, R.L. 1997Oat-maize chromosome addition lines: a new system for mapping the maize genomeProc. Natl. Acad. Sci. U.S.A.9435243529CrossRefPubMedGoogle Scholar
  4. Biesgen, C., Weiler, E.W. 1999Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from ArabidopsisPlanta208155165CrossRefPubMedGoogle Scholar
  5. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R., Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J., Fearon, K., Mao, J., Corcoran, K. 2000Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arraysNat. Biotechnol.18630634CrossRefPubMedGoogle Scholar
  6. Creelman, R.A., Mullet, J.E. 1997Biosynthesis and action of jasmonates in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.48355381CrossRefPubMedGoogle Scholar
  7. Esterbauer, H., Schaur, R.J., Zollner, H. 1991Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydesFree Rad. Biol. Med.1181128CrossRefPubMedGoogle Scholar
  8. Farmer, E.E., Almeras, E., Krishnamurthy, V. 2003Jasmonates and related oxylipins in plant responses to pathogenesis and herbivoryCurr. Opin. Plant Biol.6372378CrossRefPubMedGoogle Scholar
  9. Farmer, E.E. 1994Fatty acid signaling in plants and their associated microorganismsPlant Mol. Biol.2614231437CrossRefPubMedGoogle Scholar
  10. Farmer, E.E., Ryan, C.A. 1990Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leavesProc. Natl. Acad. Sci. U.S.A.8777137716PubMedGoogle Scholar
  11. Felsenstein, J. 2000PHYLIP Phylogeny inference packageUniversity of WashingtonSeattleVersion 3.6a. Distributed by the authorGoogle Scholar
  12. Feussner, I., Wasternack, C. 2002The lipoxygenase pathwayAnnu. Rev. Plan Biol.53275297CrossRefGoogle Scholar
  13. Feys, B.J., Parker, J.E. 2000Interplay of signaling pathways in plant disease resistanceTrends Genet.16449455CrossRefPubMedGoogle Scholar
  14. Froehlich, J.E., Itoh, A., Howe, G.A. 2001Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelopePlant Physiol.125306317CrossRefPubMedGoogle Scholar
  15. Haberer, G., Hindemitt, T., Meyers, B.C., Mayer, K.F.X. 2004Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of ArabidopsisPlant Physiol.13630093022CrossRefPubMedGoogle Scholar
  16. He, Y., Gan, S. 2001Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in ArabidopsisPlant Mol. Biol.47595605CrossRefPubMedGoogle Scholar
  17. Ishiga, Y., Funato, A., Tachiki, T., Toyoda, K., Shiraishi, T., Yamada, T., Ichinose, Y. 2002Expression of the 12-oxophytodienoic acid 10,11-reductase gene in the compatible interaction between pea and fungal pathogenPlant Cell Physiol.4312101220CrossRefPubMedGoogle Scholar
  18. Johnson, C., Boden, E., Arias, J. 2003Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in ArabidopsisPlant Cell1518461858CrossRefPubMedGoogle Scholar
  19. Kahl, J., Siemens, D.H., Aerts, R.J., Gabler, R., Kuhnemann, F., Preston, C.A., Baldwin, I.T. 2000Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivorePlanta210336342PubMedGoogle Scholar
  20. Kohli, R., Massey, V. 1998The oxidative half reaction of Old yellow enzyme. The role of tyrosine 196J. Biol. Chem.27332,76332,770Google Scholar
  21. Losano Costa, C., Arruda, P., Benedetti, C.E. 2000An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductasesPlant Mol. Biol.446171CrossRefPubMedGoogle Scholar
  22. Martienssen, R.A., Rabinowicz, P.D., O’Shaughnessy, A., McCombie, W.R. 2004Sequencing the maize genomeCurr. Opin. Plant Biol.7102107CrossRefPubMedGoogle Scholar
  23. Matsui, H., Nakamura, G., Ishiga, Y., Toshima, H., Inagaki, Y., Toyoda, K., Shiraishi, T., Ichinose, Y. 2004Structure and expression of 12-oxophytodienoate reductase subgroup I. genes in pea, and characterization of the oxidoreductase activities of their recombinant productsMol. Genet. Genomics271110CrossRefPubMedGoogle Scholar
  24. Maucher, H., Hause, B., Feussner, I., Ziegler, J., Wasternack, C. 2000Allene oxide synthases of barley (Hordeum  vulgare cv. Salome): tissue specific regulation in seedling developmentPlant J.21199213CrossRefPubMedGoogle Scholar
  25. McConn, M., Creelman, R.A., Bell, E., Mullet, J.E., Browse, J. 1997Jasmonate is essential for insect defense in ArabidopsisProc. Natl. Acad. Sci. U.S.A.9454735477CrossRefPubMedGoogle Scholar
  26. Mount, S.M. 1982A catalogue of splice junction sequencesNucleic Acids Res.10459472PubMedGoogle Scholar
  27. Multani, D.S., Meeley, R.B., Paterson, A.H., Gray, J., Briggs, S.P., Johal, G.S. 1998Plant–pathogen microevolution: molecular basis for the origin of a fungal disease in maizeProc. Natl. Acad. Sci. U.S.A.9516861691CrossRefPubMedGoogle Scholar
  28. Okagaki, R.J., Kynast, R.G., Livingston, S.M., Russell, C.D., Rines, H.W., Phillips, R.L. 2001Mapping maize sequences to chromosomes using oat-maize chromosome addition materialsPlant Physiol.12512281235CrossRefPubMedGoogle Scholar
  29. Parbery, D. 1996Trophism and the ecology of fungi associated with plantsBiol. Rev.71473527Google Scholar
  30. Parthier, B. 1991Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actionsBot. Acta104446454Google Scholar
  31. Pena-Cortes, H., Fisahn, J., Willmitzer, L. 1989Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomatoProc. Natl. Acad. Sci. U.S.A.8698519855Google Scholar
  32. Poirot, O., Suhre, K., Abergel, C., O’Toole, E., Notredame, C. 20043DCoffee: a web server for mixing sequences and structures into multiple sequence alignmentsNucleic Acids Res.32W37W40CrossRefPubMedGoogle Scholar
  33. Reekmans, R., Smet, K., Chen, C., Hummelen, P., Contreras, R. 2005Old yellow enzyme interferes with Bax-induced NADPH loss and lipid peroxidation in yeastFEMS Yeast Res.5711725CrossRefPubMedGoogle Scholar
  34. Sambrook, J., Russel, D.W. 2001Molecular Cloning: A Laboratory Manual3Cold Spring Harbor LaboratoryCold Spring Harbor, NYGoogle Scholar
  35. Schaller, F., Hennig, P., Weiler, E.W. 199812-Oxophytodienoate-10,11-reductase: occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acidPlant Physiol.11813451351CrossRefPubMedGoogle Scholar
  36. Schaller, F., Biesgen, C., Mussig, C., Altmann, T., Weiler, E.W. 200012-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesisPlanta210979984CrossRefPubMedGoogle Scholar
  37. Schaller, F. 2001Enzymes of the biosynthesis of octadecanoid-derived signalling moleculesJ. Exp. Bot.521123CrossRefPubMedGoogle Scholar
  38. Scot, G.E., King, S.B. 1984Site of action of factors for resistance to Fusarium moniliforme in maizePlant Dis.68804806Google Scholar
  39. Shah, D.M., Hightower, R.C., Meagher, R.B. 1983Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are notJ. Mol. Appl. Genet.2111126PubMedGoogle Scholar
  40. Sobajima, H., Takeda, M., Sugimori, M., Kobashi, N., Kiribuchi, K., Cho, E.M., Akimoto, C., Yamaguchi, T., Minami, E., Shibuya, N., Schaller, F., Weiler, E.W., Yoshihara, T., Nishida, H., Nojiri, H., Omori, T., Nishiyama, M., Yamane, H. 2003Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cellsPlanta216692698PubMedGoogle Scholar
  41. Springer, N.M., Barbazuk, W.B. 2004Utility of different gene enrichment approaches toward identifying and sequencing the maize gene spacePlant Physiol.135111CrossRefGoogle Scholar
  42. Stenzel, I., Hause, B., Maucher, H., Pitzschke, A., Miersch, O., Ziegler, J., Ryan, C.A., Hamberg, M. 1988Biosynthesis of 12-oxo-10,15 Z-phytodienoic acid: identification of an allene oxide cyclaseBiochem. Biophys. Res. Comm.156543550CrossRefPubMedGoogle Scholar
  43. Strassner, J., Schaller, F., Frick, U.B., Howe, G.A., Weiler, E.W., Amrhein, N., Macheroux, P., Schaller, A. 2002Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound responsePlant J.32585601CrossRefPubMedGoogle Scholar
  44. Strassner, J., Furholz, A., Macheroux, P., Amrhein, N., Schaller, A. 1999A homolog of old yellow enzyme in tomato. Spectral properties and substrate specificity of the recombinant proteinJ. Biol. Chem.27435,06735,073Google Scholar
  45. Stintzi, A., Browse, J. 2000The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesisProc. Natl. Acad. Sci. U.S.A.9710,62510,630Google Scholar
  46. Stintzi, A., Weber, H., Reymond, P., Browse, J., Farmer, E.E. 2001Plant defense in the absence of jasmonic acid: the role of cyclopentenonesProc. Natl. Acad. Sci. U.S.A.9812,83712,842Google Scholar
  47. Swofford, D.L. 1998PAUP*: Phylogenetic Analysis using Parsimony and other MethodsSinauer AssociatesSunderland, MassGoogle Scholar
  48. Swiatek, A., Azmi, A., Witters, E. and van Onckelen, H. 2003. Stress messengers jasmonic acid and abscisic acid negatively regulate plant cell cycleBulg. J. Plant Physiol. Special Issue: 172–178Google Scholar
  49. Thaler, J.S., Owen, B., Higgins, V.J. 2004The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestylesPlant Physiol.135530538CrossRefPubMedGoogle Scholar
  50. Thomma, B., Penninckx, I., Broekaert, W.F., Cammue, B.P.A. 2001The complexity of disease signaling in ArabidopsisCurr. Opin. Immunol.136368CrossRefPubMedGoogle Scholar
  51. Timmermans, M.C., Brutnell, T.P., Becraft, P.W. 2004The 46th annual maize genetics conference. Unlocking the secrets of the maize genomePlant Physiol.13626332640CrossRefPubMedGoogle Scholar
  52. Turner, J.G., Ellis, C., Devoto, A. 2002The jasmonate signal pathwayPlant Cell14S153S164PubMedGoogle Scholar
  53. Uchida, K. 20034-Hydroxy-2-nonenal: a product and mediator of oxidative stressProg. Lipid Res.42318343CrossRefPubMedGoogle Scholar
  54. Vick, B.A., Zimmerman, D.C. 1984Biosynthesis of jasmonic acid by several plant speciesPlant Physiol.75458461Google Scholar
  55. Ziegler, J., Stenzel, I., Hause, B., Maucher, H., Hamberg, M., Grimm, R., Ganal, M., Wasternack, C. 2000Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonatesJ. Biol. Chem.27519,13219,138Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jinglan Zhang
    • 1
  • Carl Simmons
    • 2
  • Nasser Yalpani
    • 2
  • Virginia Crane
    • 2
  • Heather Wilkinson
    • 1
  • Michael Kolomiets
    • 1
  1. 1.Department of Plant Pathology and Microbiology, Department of Plant PathologyTexas A&M University, 2132 TAMUCollege StationUSA
  2. 2.Pioneer Hi-Bred International, Inc.JohnstonUSA

Personalised recommendations