Plant Molecular Biology

, Volume 58, Issue 5, pp 699–720 | Cite as

Sorghum bicolor’s Transcriptome Response to Dehydration, High Salinity and ABA

  • Christina D. Buchanan
  • Sanghyun Lim
  • Ron A. Salzman
  • Ioannis Kagiampakis
  • Daryl T. Morishige
  • Brock D. Weers
  • Robert R. Klein
  • Lee H. Pratt
  • Marie-Michèle Cordonnier-Pratt
  • Patricia E. Klein
  • John E. MulletEmail author


Genome wide changes in gene expression were monitored in the drought tolerant C4 cereal Sorghum bicolor, following exposure of seedlings to high salinity (150 mM NaCl), osmotic stress (20% polyethylene glycol) or abscisic acid (125 μM ABA). A sorghum cDNA microarray providing data on 12 982 unique gene clusters was used to examine gene expression in roots and shoots at 3- and 27-h post-treatment. Expression of ~2200 genes, including 174 genes with currently unknown functions, of which a subset appear unique to monocots and/or sorghum, was altered in response to dehydration, high salinity or ABA. The modulated sorghum genes had homology to proteins involved in regulation, growth, transport, membrane/protein turnover/repair, metabolism, dehydration protection, reactive oxygen scavenging, and plant defense. Real-time PCR was used to quantify changes in relative mRNA abundance for 333 genes that responded to ABA, NaCl or osmotic stress. Osmotic stress inducible sorghum genes identified for the first time included a beta-expansin expressed in shoots, actin depolymerization factor, inositol-3-phosphate synthase, a non-C4 NADP-malic enzyme, oleosin, and three genes homologous to 9-cis-epoxycarotenoid dioxygenase that may be involved in ABA biosynthesis. Analysis of response profiles demonstrated the existence of a complex gene regulatory network that differentially modulates gene expression in a tissue- and kinetic-specific manner in response to ABA, high salinity and water deficit. Modulation of genes involved in signal transduction, chromatin structure, transcription, translation and RNA metabolism contributes to sorghum’s overlapping but nonetheless distinct responses to ABA, high salinity, and osmotic stress. Overall, this study provides a foundation of information on sorghum’s osmotic stress responsive gene complement that will accelerate follow up biochemical, QTL and comparative studies


ABA dehydrin drought gene regulation microarray sorghum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S., Park, S., Jeong, D., Lee, D., Kang, H., Yu, J., Hur, J., Kim, S., Kim, Y., Lee, M.,  et al. 2003Generation and analysis of end sequence database for T-DNA tagging lines in ricePlant Physiol.13320402047CrossRefPubMedGoogle Scholar
  2. Bieche, I., Laurendeau, I., Tozlu, S., Olivi, M., Vidaud, D., Lidereau, R., Vidaud, M. 1999Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assayCancer Res.5927592765PubMedGoogle Scholar
  3. Blum, A. 1996Crop responses to drought and the interpretation of adaptationPlant Growth Regulat.20135148CrossRefGoogle Scholar
  4. Boyer, J. 1982Plant productivity and the environmentScience218444448Google Scholar
  5. Bray, E. 1997Plant responses to water deficitTrends Plant Sci.24854CrossRefGoogle Scholar
  6. Bray, E. 2002Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression dataAnn. Bot.89803811CrossRefPubMedGoogle Scholar
  7. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C., Causton, H.,  et al. 2001Minimum information about a microarray experiment. MIAME – toward standards for microarray dataNat. Genet.29365371CrossRefPubMedGoogle Scholar
  8. Briggs, S. 1998Plant genomics: more than food for thoughtProc. Natl. Acad. Sci. USA9519861988CrossRefPubMedGoogle Scholar
  9. Buchanan, C., Klein, P., Mullet, J. 2004Phylogenetic analysis of 5’-non-coding regions from the ABA-responsive rab16/17 gene family of sorghum, maize and rice provides insight into the composition, organization and function of cis-regulatory modulesGenetics16816391654CrossRefPubMedGoogle Scholar
  10. Chi, W., Yang, J., Wu, N., Zhang, F. 2004Four rice genes encoding NADP malic enzyme exhibit distinct expression profilesBiosci. Biotechnol. Biochem.6818651874CrossRefPubMedGoogle Scholar
  11. Close, T. 1996Dehydrins: emergence of a biochemical role of a family of plant dehydration proteinsPhysiol. Plant97795803CrossRefGoogle Scholar
  12. Close, T. 1997Dehydrins: a commonality in the response of plants to dehydration and low temperaturePhysiol. Plant100291296CrossRefGoogle Scholar
  13. Cordonnier-Pratt, M.-M., Liang, C., Wang, H., Kolychev, D., Sun, F., Freeman, R., Sullivan, R., Pratt, L. 2004MAGIC database and interfaces: an integrated package for gene discovery and expressionComp. Funct. Genom.3268275Google Scholar
  14. Crasta, O., Xu, W., Rosenow, D., Mullet, J., Nguyen, H. 1999Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturityMol. Gen. Genet.262579588PubMedGoogle Scholar
  15. Creelman, R., Mason, H., Bensen, R., Boyer, J., Mullet, J. 1990Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Analysis of growth, sugar accumulation, and gene expressionPlant Physiol.92205214Google Scholar
  16. Creelman, R., Mullet, J. 1991Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteinsPlant Mol. Biol.17591608CrossRefPubMedGoogle Scholar
  17. Delauney, A., Verma, D. 1993Proline biosynthesis and osmoregulation in plantsPlant J.4215223Google Scholar
  18. Doggett, H. 1988SorghumJohn WileyNew York, NYGoogle Scholar
  19. Dolferus, R., Dennis, E., Peacock, W. 1994Regulation of the Arabidopsis Adh gene by anaerobic and other environmental stressesAnn. Bot.74301308CrossRefGoogle Scholar
  20. Draye, X., Lin, Y., Qian, X., Bowers, J., Burow, G., Morrell, P., Peterson, D., Presting, G., Ren, S., Wing, R.,  et al. 2001Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundationPlant Physiol.12513251341CrossRefPubMedGoogle Scholar
  21. Drincovich, M., Casati, P., Andreo, C. 2001NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathwaysFEBS Lett.49016CrossRefPubMedGoogle Scholar
  22. Dure, L. 1993A repeating 11-mer amino acid motif and plant desiccationPlant J.3363369CrossRefPubMedGoogle Scholar
  23. Finkelstein, R., Gampala, S., Rock, C. 2002Abscisic acid signaling in seeds and seedlingsPlant Cell14S15S45PubMedGoogle Scholar
  24. Garg, A., Kim, J., Owens, T., Ranwala, A., Choi, Y., Kochian, L., Wu, R. 2002Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stressesProc. Natl. Acad. Sci. USA991589815903CrossRefPubMedGoogle Scholar
  25. Gleick, P. 2003Global freshwater resources: soft-path solutions for the 21st centuryScience30215241528CrossRefPubMedGoogle Scholar
  26. Goff, S., Ricke, D., Lan, T.-H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H.,  et al. 2002A draft sequence of the rice genome Oryza sativa L. ssp. japonicaScience29692100CrossRefPubMedGoogle Scholar
  27. Grieve, C., Maas, E. 1984Betaine accumulation in salt-stressed sorghumPhysiol. Plant61167171Google Scholar
  28. Guerrero, F., Jones, J., Mullet, J. 1990Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genesPlant Mol. Biol.151126CrossRefPubMedGoogle Scholar
  29. Hasegawa, P., Bressan, R., Zhu, J.-K., Bohnert, H. 2000Plant cellular and molecular responses to high salinityAnnu. Rev. Plant Physiol. Plant Mol. Biol.51463499Google Scholar
  30. Himmelbach, A., Yang, Y., Grill, E. 2003Relay and control of abscisic acid signalingCurr. Opin. Plant Biol.6470479CrossRefPubMedGoogle Scholar
  31. Holzberg, S., Brosio, P., Gross, C., Pogue, G. 2002Barley stripe mosaic virus-induced gene silencing in a monocot plantPlant J.30315327CrossRefPubMedGoogle Scholar
  32. Hoth, S., Morgante, M., Sanchez, J., Hanafey, M., Tingey, S., Chua, N. 2002Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutantJ. Cell Sci.11548914900CrossRefPubMedGoogle Scholar
  33. Hsiao, T. 1973Plant responses to water stressAnnu. Rev. Plant Physiol.24519570CrossRefGoogle Scholar
  34. Ishitani, M., Majumder, A., Bornhouser, A., Michalowski, C., Jensen, R., Bohnert, H. 1996Coordinate transcriptional induction of myo-inositol metabolism during environmental stressPlant J.9537548CrossRefPubMedGoogle Scholar
  35. Ismail, A., Hall, A. and Close, T., 1999. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. USA 96: 9Google Scholar
  36. Jeanneau, M., Gerentes, D., Foueillassar, X., Zivy, M., Vidal, J., Toppan, A., Perez, P. 2002Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPCBiochimie8411271135CrossRefPubMedGoogle Scholar
  37. Johnson, N., Revenga, C., Echeverria, J. 2001Managing water for people and natureScience29210711072CrossRefPubMedGoogle Scholar
  38. Jones, L., McQueen-Mason, S. 2004A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineumFEBS Lett.5596165CrossRefPubMedGoogle Scholar
  39. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H. 2001Gene expression profiles during the initial phase of salt stress in ricePlant Cell13889905CrossRefPubMedGoogle Scholar
  40. Keller, E., Cosgrove, D. 1995Expansins in growing tomato leavesPlant J.8795802PubMedGoogle Scholar
  41. Khush, G. 1999Green revolution: preparing for the 21st centuryGenome42646655CrossRefPubMedGoogle Scholar
  42. Klein, P., Klein, R., Cartinhour, S., Ulanch, P., Dong, J., Obert, J., Morishige, D., Schlueter, S., Childs, K., Ale, M.,  et al. 2000A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome mapGenome Res.10789807CrossRefPubMedGoogle Scholar
  43. Klein, P., Klein, R., Vrebalov, J., Mullet, J. 2003Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangementPlant J.34605621CrossRefPubMedGoogle Scholar
  44. Koster, K., Leopold, A. 1988Sugars and desiccation tolerance in seedsPlant Physiol.88829832Google Scholar
  45. Kreps, J., Wu, Y., Chang, H., Zhu, T., Wang, X., Harper, J. 2002Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stressPlant Physiol.13021292141CrossRefPubMedGoogle Scholar
  46. Lee, M. 1998Genome projects and gene pools: new germplasm for plant breeding?Proc. Natl. Acad. Sci. USA9520012004CrossRefPubMedGoogle Scholar
  47. Leonhardt, N., Kwak, J., Robert, N., Waner, D., Leonhardt, G., Schroeder, J. 2004Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutantPlant Cell16596615CrossRefPubMedGoogle Scholar
  48. Lin, F., Xu, S., Ni, W., Chu, Z., Xu, Z., Xue, H. 2003Identification of ABA-responsive genes in rice shoots via cDNA macroarrayCell Res.135968PubMedGoogle Scholar
  49. Loewus, F., Murthy, P. 2000myo-Inositol metabolism in plantsPlant Sci.150119CrossRefGoogle Scholar
  50. Lopez Becerra, E., Puigdomenech, P., Stiefel, V. 1998A gene coding for a malic enzyme expressed in the embryo root epidermis from Zea mays Accession No. AJ224847. PGR 98–081Plant Physiol.117332Google Scholar
  51. Ludlow, M., Muchow, R. 1990A critical evaluation of traits for improving crop yields in water-limited environmentsAdv. Agron.43107153Google Scholar
  52. Ludlow, M., Santamaria, J., Fukai, S. 1990Contribution of osmotic adjustment to grain yield in Sorghum bicolor L. Moench under water-limited conditions. II. Water stress after anthesisAust. J. Agric. Res.416778CrossRefGoogle Scholar
  53. McNeil, S., Nuccio, M., Hanson, A. 1999Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistancePlant Physiol.120945949CrossRefPubMedGoogle Scholar
  54. Menz, M., Klein, R., Mullet, J., Obert, J., Unruh, N., Klein, P. 2002A high-density genetic map of Sorghum bicolor L. Moench based on 2926 AFLP-R, RFLP and SSR markersPlant Mol. Biol.48483499CrossRefPubMedGoogle Scholar
  55. Ming, R., Liu, S., Lin, Y., da Silva, J., Wilson, W., Braga, D., Deynze, A., Wenslaff, T., Wu, K., Moore, P.,  et al. 1998Detailed alignment of Saccharum and Sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomesGenetics15016631682PubMedGoogle Scholar
  56. Morgan, P., Finlayson, S., Childs, K., Mullet, J., Rooney, W. 2002Opportunities to improve adaptability and yield in grasses: lessons from sorghumCrop Sci.4217911799Google Scholar
  57. Mullet, J., Klein, R., Klein, P. 2001Sorghum bicolor – an important species for comparative grass genomics and a source of beneficial genes for agricultureCurr. Opin. Plant Biol.5118121CrossRefGoogle Scholar
  58. Nonami, H., Boyer, J. 1989Turgor and growth at low water potentialsPlant Physiol.89798804Google Scholar
  59. Nonami, H., Boyer, J. 1990Primary events regulating stem growth at low water potentialsPlant Physiol.9316011609Google Scholar
  60. Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K.,  et al. 2003Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarrayPlant J.34868887CrossRefPubMedGoogle Scholar
  61. Ouellet, F., Carpentier, E., Cope, M., Monroy, A., Sarhan, F. 2001Regulation of a wheat actin-depolymerizing factor during cold acclimationPlant Physiol.125360368CrossRefPubMedGoogle Scholar
  62. Ozturk, Z., Talame, V., Deyholos, M., Michalowski, C., Galbraith, D., Gozukirmizi, N., Tuberosa, R., Bohnert, H. 2002Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barleyPlant Mol. Biol.48551573PubMedGoogle Scholar
  63. Pratt, L.H., Liang, C., Shah, M., Sun, F., Wang, H., Reid, St-P., Gingle, A.R., Paterson, A.H., Wing, R., Dean, R., Klein, R.R., Nguyen, H.T., Ma, H-M., Zhao, X., Morishige, D.T., Mullet, J.E. and Cordonnier-Pratt, M-M. 2005. Sorghum Expressed Sequence Tags Identify Signature Genes for Drought, Pathogenesis and Skotomorphogenesis from a Milestone Set of 16,801 Unique Transcripts. Plant Physiol. (In press)Google Scholar
  64. Price, A., Cairns, J., Horton, P., Jones, H., Griffiths, H. 2002Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responsesJ. Exp. Bot.539891004CrossRefPubMedGoogle Scholar
  65. Quackenbush, J. 2002Microarray data normalization and transformationNat. Genet.32496501CrossRefPubMedGoogle Scholar
  66. Rabbani, M., Maruyama, K., Abe, H., Khan, M., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. 2003Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analysesPlant Physiol.13317551767CrossRefPubMedGoogle Scholar
  67. Rajeevan, M., Ranamukhaarachchi, D., Vernon, S., Unger, E. 2001Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologiesMethods25443451CrossRefPubMedGoogle Scholar
  68. Rontein, D., Basset, G., Hanson, A. 2002Metabolic engineering of osmoprotectant accumulation in plantsMetab. Eng.44956CrossRefPubMedGoogle Scholar
  69. Rosenow, D., Ejeta, G., Clark, L., Gilbert, M., Henzell, R., Borell, A., Muchow, R. 1996 Breeding for pre- and post-flowering drought stress resistance in sorghumRosenow, D.T.Yohe, J.M. eds. Proceeding of the International Conference on Genetic Improvement in Sorghum and Pearl MilletLubbockTX400411Google Scholar
  70. Rosenow, D., Quisenberry, J., Wendt, C., Clark, L. 1983Drought tolerant sorghum and cotton germplasmAgric. Water Manage.7207222CrossRefGoogle Scholar
  71. Salzman, R.A., Brady, J.A., Finlayson S.A., Buchanan, C.D., Sun, F. Klein, P.E., Klein, R.R., Pratt, L.M., Cordonnier-Pratt, M.M. and Mullet, J.E. 2005. Transcriptional profiling of sorghum induced by methyl jasmonate, salicyclic acid, and aminocyclopropene carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol, 138: 352–368Google Scholar
  72. Schein, M., Yang, Z., Mitchell-Olds, T., Schmid, K. 2004Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related speciesMol. Biol. Evol.21659669CrossRefPubMedGoogle Scholar
  73. Schwartz, S., Qin, X., Zeevaart, J. 2003Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymesPlant Physiol.13115911601CrossRefPubMedGoogle Scholar
  74. Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T.,  et al. 2002aMonitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatment using a full-length cDNA microarrayFunct. Integrat. Genom.2282291CrossRefGoogle Scholar
  75. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K. 2001aMonitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarrayPlant Cell136172CrossRefGoogle Scholar
  76. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T.,  et al. 2002bMonitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarrayPlant J.31279292CrossRefGoogle Scholar
  77. Sharp, R., Silk, W., Hsiao, T. 1988Growth of the maize primary root at low water potentialsPlant Physiol.875057Google Scholar
  78. Shinozaki, K., Dennis, E., Seki, M. 2003Regulatory network of gene expression in the drought and cold stress responsesCurr. Opin. Plant Biol.6410417CrossRefPubMedGoogle Scholar
  79. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., Futcher, B. 1998Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarry hybridizationMol. Biol. Cell932733297PubMedGoogle Scholar
  80. Tang, W.-K., Cheng, C., Fong, W.-P. 2002First purification of the antiquitin protein and demonstration of its enzymatic activityFEBS Lett.516183186CrossRefPubMedGoogle Scholar
  81. Tausta, S., Coyle, H., Rothermel, B., Stiefel, V., Nelson, T. 2002Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestorPlant Mol. Biol.50635652CrossRefPubMedGoogle Scholar
  82. Tuberosa, R., Salvi, S., Sanguineti, M., Landi, P., Maccaferri, M., Conti, S. 2002Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maizeAnn. Bot.89941963CrossRefPubMedGoogle Scholar
  83. Tuinstra, M., Grote, E., Goldsbrough, P., Ejeta, G. 1997Genetic analysis of post-flowering drought tolerance and components of grain development of Sorghum bicolor. L. MoenchMol. Breed.3439448CrossRefGoogle Scholar
  84. Dijken, A., Schluepmann, H., Smeekens, S. 2004Arabidopsis trehalose−6-phosphate synthase 1 is essential for normal vegetative growth and transition to floweringPlant Physiol.13519CrossRefGoogle Scholar
  85. Verslues, P., Ober, E., Sharp, R. 1998Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutionsPlant Physiol.11614031412CrossRefPubMedGoogle Scholar
  86. Wang, H., Miyazaki, S., Kawai, K., Deyholos, M., Galbraith, D., Bohnert, H. 2003Temporal progression of gene expression responses to salt shock in maize rootsPlant Mol. Biol.52873891CrossRefPubMedGoogle Scholar
  87. Weinburg, R., Lerner, H., Poljakoff-Mayber, A. 1982A relationship between potassium and proline accumulation in salt-stressed Sorghum bicolorPhysiol. Plant55510Google Scholar
  88. Wood, A., Saneoka, H., Rhodes, D., Joly, R., Goldsbrough, P. 1996Betaine aldehyde dehydrogenase in sorghum. Molecular cloning and expression of two related genesPlant Physiol.11013011308CrossRefPubMedGoogle Scholar
  89. Wu, Y., Thorne, E., Sharp, R., Cosgrove, D. 2001Modification of expansin transcript levels in the maize primary root at low water potentialsPlant Physiol.12614711479CrossRefPubMedGoogle Scholar
  90. Xiong, L., Schumaker, K., Zhu, J.-K. 2002Cell signaling during cold, drought, and salt stressPlant Cell14S165S183CrossRefPubMedGoogle Scholar
  91. Xu, W., Subudhi, P., Crasta, O., Rosenow, D., Mullet, J., Nguyen, H. 2000Molecular mapping of QTLs conferring stay-green in grain sorghum Sorghum bicolor L. MoenchGenome43461469CrossRefPubMedGoogle Scholar
  92. Yazaki, J., Shimatani, Z., Hashimoto, A., Nagata, Y., Fujii, F., Kojima, K., Suzuki, K., Taya, T., Tonouchi, M., Nelson, C.,  et al. 2004Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and ArabidopsisPhysiol. Genom.1787100CrossRefGoogle Scholar
  93. Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y., Shinozaki, K. 1995Correlation between the induction of a gene for delta 1-pyrroline−5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stressPlant J.7751760CrossRefPubMedGoogle Scholar
  94. Yu, J., Hu, S., Wang, J., Wong, G.K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X.,  et al. 2002A draft sequence of the rice genome Oryza sativa L. ssp. indicaScience2967992PubMedGoogle Scholar
  95. Zhang, J., Creelman, R., Zhu, J. 2004From laboratory to field. Using information from Arabidopsis to engineer salt, cold and drought tolerance in cropsPlant Physiol.135615621CrossRefPubMedGoogle Scholar
  96. Zhu, J.-K. 2001aCell signaling under salt, water and cold stressesCurr. Opin. Plant Biol.4401406CrossRefGoogle Scholar
  97. Zhu, J.-K. 2001bPlant salt toleranceTrends Plant Sci.66671CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Christina D. Buchanan
    • 1
  • Sanghyun Lim
    • 1
  • Ron A. Salzman
    • 1
  • Ioannis Kagiampakis
    • 2
  • Daryl T. Morishige
    • 2
  • Brock D. Weers
    • 2
  • Robert R. Klein
    • 3
  • Lee H. Pratt
    • 4
  • Marie-Michèle Cordonnier-Pratt
    • 4
  • Patricia E. Klein
    • 1
    • 5
  • John E. Mullet
    • 1
    • 2
    Email author
  1. 1.Institute for Plant Genomics and BiotechnologyTexas A&M UniversityCollege StationUSA
  2. 2.Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUSA
  3. 3.USDA-ARSSouthern Plains Agricultural Research CenterCollege StationUSA
  4. 4.Department of Plant BiologyUniversity of GeorgiaAthensUSA
  5. 5.Department of Horticultural SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations