Plant Molecular Biology

, Volume 61, Issue 1–2, pp 95–109 | Cite as

CASAR82A, a Pathogen-induced Pepper SAR8.2, Exhibits an Antifungal Activity and its Overexpression Enhances Disease Resistance and Stress Tolerance

  • Sung Chul Lee
  • Byung Kook HwangEmail author


Pepper SAR8.2 gene (CASAR82A) was previously reported to be locally or systemically induced in pepper plants by biotic and abiotic stresses. In this study, the physiological and molecular functions of the pepper SAR8.2 protein in the plant defense responses were investigated by generating Arabidopsis transgenic lines overexpressing the CASAR82A gene. The transgenic Arabidopsis plants grew faster than the wild-type plants, indicating that the CASAR82A gene was involved in plant development. The ectopic expression of CASAR82A in Arabidopsis was accompanied by the expression of the Arabidopsis pathogenesis-related (PR)-genes including AtPR-1, AtPR-4 and AtPR-5. CASAR82A overexpression enhanced the resistance against infections by Pseudomonas syringae pv. tomato, Fusarium oxysporum f.sp. matthiolae or Botrytis cinerea. The transgenic plants also exhibited increased NaCl and drought tolerance during all growth stages. Moreover, the methyl viologen test showed that the transgenic plants were tolerant to oxidative stress. The purified recombinant CASAR82A protein and crude protein extracts of the transgenic plants exhibited antifungal activity against some phytopathogenic fungi, indicating that the enhanced resistance of the transgenic plants to fungal pathogen infection may be due to the antifungal effect of SAR8.2 protein.


antifungal activity disease resistance pepper SAR8.2 stress tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D., Stinson, J., Pear, J., Glascock, C., Ward, E., Goodman, R.M., Ryals, J. 1992A new multigene family inducible by tobacco mosaic virus or salicylic acid in tobaccoMol. Plant-Microbe Interact.5513515PubMedGoogle Scholar
  2. Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., Lamb, C. 1998Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunityCell92773784PubMedCrossRefGoogle Scholar
  3. Asada, K. 1999The water–water cycle in chloroplasts: scanvenging of active oxygen and dissipation of excess photonsAnnu. Rev. Plant Physiol. Plant Mol. Biol.50601639PubMedCrossRefGoogle Scholar
  4. Borsani, O., Valpuesta, V., Botell, A. 2001Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlingsPlant Physiol.12610241030PubMedCrossRefGoogle Scholar
  5. Chen, W., Chao, G., Singh, K.B. 1996The promoter of a H2O2-inducible Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP-binding sitesPlant J.10955966PubMedCrossRefGoogle Scholar
  6. Cheong, Y.H., Moon, B.C., Kim, J.K., Kim, C.Y., Kim, M.C., Kim, I.H., Park, C.Y., Kim, J.C., Park, B.O., Koo, S.C., Yoon, H.W., Chung, W.S., Lim, C.O., Lee, S.Y., Cho, M.J. 2003BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factorPlant Physiol.13219611972PubMedCrossRefGoogle Scholar
  7. Clough, S.J., Bent, A.F. 1998Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J.16735743PubMedCrossRefGoogle Scholar
  8. Dangl, J.L., Jones, J.D. 2001Plant pathogens and integrated defence responses to infectionNature411826833PubMedCrossRefGoogle Scholar
  9. Epple, P., Klaus, A., Bohlmann, H. 1997Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum Plant Cell9509520PubMedCrossRefGoogle Scholar
  10. Gomès, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinssot, B., Sanejouand, Y., Delrop, S., Coutos-Thévenot, P. 2003Nonspecific lipid transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatmentsMol. Plant Microbe Interact.16456464PubMedGoogle Scholar
  11. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z. 2002Transcription factor CBF4 is a regulator of drought adaptation in ArabidopsisPlant Physiol.130639648PubMedCrossRefGoogle Scholar
  12. Herbers, K., Meuwly, P., Frommer, W.B., Métraux, J.-P., Sonnewald, U. 1996Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathwayPlant Cell8793803PubMedCrossRefGoogle Scholar
  13. Hwang, B.K. 2001Cytology, physiology and molecular genetics of resistance to Phytophthora blight in pepper plantsPlant Pathol. J.17921Google Scholar
  14. Ingram, J., Bartels, D. 1996The molecular basis of dehydration tolerance in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.47377403PubMedCrossRefGoogle Scholar
  15. Ishitani, M., Xiong, L., Lee, H., Stevenson, B., Zhu, J.K. 1998 HOS1, a genetic locus involved in cold-responsive gene expression in ArabidopsisPlant Cell1011511161PubMedCrossRefGoogle Scholar
  16. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F. 1998Arabidopsis CBF1 overexpression induces cor genes and enhances freezing toleranceScience280104106PubMedCrossRefGoogle Scholar
  17. Karlowski, W.M., Hirsch, A.M. 2003The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and developmentPlant Mol. Biol.52121133PubMedCrossRefGoogle Scholar
  18. Karpinski, S., Wingsle, G., Karpinska, B., Hällogren, J.E. 2001Redox sensing of photooxidative stress and acclamatory mechanisms in plantsAro, E.M.Andersson, B. eds. Regulation of PhotosynthesisKluwer Academic PublishersNetherlands469486Google Scholar
  19. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factorNat. Biotechnol.17287291PubMedCrossRefGoogle Scholar
  20. Kim, Y.J., Martin, G.B. 2004Molecular mechanisms involved in bacterial speck disease resistance of tomatoPlant Pathol. J.20712Google Scholar
  21. Kranner, I., Beckett, R.P., Wornik, S., Zorn, M., Pfeifhofer, H.W. 2002Revival of a resurrection plant correlates with its antioxidant statusPlant J.311324PubMedCrossRefGoogle Scholar
  22. Lamb, L., Dixon, R.A. 1997The oxidative burst in plant disease resistanceAnnu. Rev. Plant Physiol. Plant Mol. Biol.48251275PubMedCrossRefGoogle Scholar
  23. Lee, S.C., Hwang, B.K. 2003Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum Planta216387396PubMedGoogle Scholar
  24. Lee, S.C., Hwang, B.K. 2005Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum Planta221790800PubMedCrossRefGoogle Scholar
  25. Lee, J.H., Kim, S.H., Jung, Y.H., Kim, J.A., Lee, M.O., Choi, P.G., Choi, W., Kim, K.N., Jwa, N.S. 2005Molecular cloning and functional analysis of rice (Oryza sativa L.) OsNDR1 on defense signaling pathwayPlant Pathol. J.21149157Google Scholar
  26. Lee, J., Rudd, J.J., Macioszek, V.K., Scheel, D. 2004Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsleyJ. Biol. Chem.2792244022448PubMedCrossRefGoogle Scholar
  27. Lichtenthaler, H.K. 1987Cholrophylls and carotenoids: pigments of photosynthetic biomembranesMethods Enzymol.148350382CrossRefGoogle Scholar
  28. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozachi, K., Shinozachi, K. 1998Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis Plant Cell1013911406PubMedCrossRefGoogle Scholar
  29. Mittler, R. 2002Oxidative stress, antioxidants and stress toleranceTrends Plant Sci.7405410PubMedCrossRefGoogle Scholar
  30. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco culturesPhysiol. Plant.15473497CrossRefGoogle Scholar
  31. Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S., Soave, C. 2004 Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell deathPlant J.38940953PubMedCrossRefGoogle Scholar
  32. Nishizawa, Y., Saruta, M., Nakazono, K., Nishio, Z., Soma, M., Yoshida, T., Nakajima, E., Hibi, T. 2003Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1 Plant Mol. Biol.51143152PubMedCrossRefGoogle Scholar
  33. Piao, H.L., Lim, J.H., Kim, S.J., Cheong., G.W., Hwang, I. 2001Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis Plant J.27305314PubMedCrossRefGoogle Scholar
  34. Ramanjulu, S., Bartels, D. 2002Drought- and desiccation-induced modulation of gene expression in plantsPlant Cell Environ.25141151PubMedCrossRefGoogle Scholar
  35. Rao, M.V., Lee, H.I., Davis, K.R. 2002Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell deathPlant J.32447456PubMedCrossRefGoogle Scholar
  36. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., Hunt, M.D. 1996Systemic acquired resistancePlant Cell818091819PubMedCrossRefGoogle Scholar
  37. Sambrook, J., Russell, D.W. 2001Molecular Cloning: A Laboratory Manual3Cold Spring Habor Laboratory PressCold Spring Habor, NYGoogle Scholar
  38. Shi, H., Lee, B., Wu, S., Zhu, K. 2003Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana Nat. Biotechnol.218185PubMedCrossRefGoogle Scholar
  39. Staehelin, L.A., Newcomb, E.H. 2000 Membrane structure and membranous organellesBuchanan, B.Gruissem, W.Jones, R.L. eds. Biochemistry and Molecular Biology of PlantsASPP PressRockville, MD250Google Scholar
  40. Sticher, L., Mauch-Mani, B., Métraux, J.P. 1997Systemic acquired resistanceAnnu. Rev. Phytopathol.35235270PubMedCrossRefGoogle Scholar
  41. Sunkar, R., Bartels, D., Kirch, H.H. 2003Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerancePlant J.35452464PubMedCrossRefGoogle Scholar
  42. Suntres, Z.E. 2002Role of antioxidants in paraquat toxicityToxicology1806577PubMedCrossRefGoogle Scholar
  43. Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., Kobayashi, H. 1999A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxificationPlant Cell1111951206PubMedCrossRefGoogle Scholar
  44. Turner, J.G., Ellis, C., Devoto, A. 2002The jasmonate signal pathwayPlant Cell14153164Google Scholar
  45. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Metraux, J., Ryals, J.A. 1991Coordinate gene activity in response to agents that induce systemic acquired resistancePlant Cell310851094PubMedCrossRefGoogle Scholar
  46. Yamaguchi-Shinozaki, K., Shinozaki, K. 1994A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stressPlant Cell6251264PubMedCrossRefGoogle Scholar
  47. Zhu, J.K., Liu, J., Xiong, L. 1998Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutritionPlant Cell1011811191PubMedCrossRefGoogle Scholar
  48. Zimmermann, H.M., Hartmann, K., Schreiber, L., Steudle, E. 2000Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn root (Zea mays L.)Planta210302311PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Laboratory of Molecular Plant Pathology, College of Life and Environmental SciencesKorea UniversitySungbuk-ku, Anam-dongRepublic of Korea

Personalised recommendations