Plant Molecular Biology

, Volume 58, Issue 3, pp 401–419 | Cite as

Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis

  • Xiaohong Zhang
  • Baomin Feng
  • Qing Zhang
  • Diya Zhang
  • Naomi Altman
  • Hong Ma
Article

Abstract

We have used oligonucleotide microarrays to detect Arabidopsis gene expression during early flower development. Among the 22,746 genes represented on the Affymetrix ATH1 chip, approximately 14,660 (64.5%) genes were expressed with signal intensity at or more than 50 in each of the six organs/structures examined, including young inflorescences (floral stages 1–9), stage-12 floral buds, developing siliques, leaves, stems, and roots. 17,583 genes were expressed with an intensity at or above 50 in at least one tissue, including 12,245 genes that were expressed in all the six tissues. Comparison of genes expressed between young inflorescence or stage-12 floral buds with other tissues suggests that relatively large numbers of genes are expressed at similar levels in tissues that are related morphologically and/or developmentally, as supported by a cluster analysis with data from two other studies. Further analysis of the genes preferentially expressed in floral tissues has uncovered new genes potentially involved in Arabidopsis flower development. One hundred and four genes were determined to be preferentially expressed in young inflorescences, including 22 genes encoding putative transcription factors. We also identified 105 genes that were preferentially expressed in three reproductive structures (the young inflorescences, stage-12 floral buds and developing siliques), when compared with the vegetative tissues. RT-PCR results of selected genes are consistent with the results from these microarrays and suggest that the relative signal intensities detected with the Affymetrix microarray are reliable estimates of gene expression.

Keywords

Affymetrix microarray Arabidopsis thaliana flower development gene expression young inflorescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.pdf (400 kb)
Supplementary material

References

  1. Affymetrix 2001. GeneChip expression analysis overview. www.Affymetrix.com.Google Scholar
  2. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., Ecker, J.R. 2003Genome-wide insertional mutagenesis of Arabidopsis thalianaScience301653657Google Scholar
  3. Alvarez, J., Smyth, D.R. 1999CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUSDevelopment12623772386Google Scholar
  4. Arabidopsis Genome Initiative,  2000Analysis of the genome sequence of the flowering plant Arabidopsis thalianaNature408796815Google Scholar
  5. Azumi, Y., Liu, D., Zhao, D., Li, W., Wang, G., Hu, Y., Ma, H. 2002Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like proteinEMBO J.2130813095Google Scholar
  6. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Staveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S.A., Patel, K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T., Pohl, T.M., Terryn, N., Gielen, J., Villarroel, R., Chalwatzis, N. 1998Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thalianaNature391485488Google Scholar
  7. Chen, X., Meyerowitz, E.M. 1999HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathwayMol. Cell3349360Google Scholar
  8. Chen, X., Liu, J., Cheng, Y., Jia, D. 2002bHEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flowerDevelopment12910851094Google Scholar
  9. Chuang, C.F., Running, M.P., Williams, R.W., Meyerowitz, E.M. 1999The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thalianaGenes Dev.13334344Google Scholar
  10. Desikan, R.S.A.H.-M., Hancock, J.T., Neill, S.J. 2001Regulation of the Arabidopsis transcriptome by oxidative stressPlant Physiol.127159172Google Scholar
  11. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., Yanofsky, M.F. 2004The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identityCurr. Biol.1419351940Google Scholar
  12. Donson, J., Fang, Y., Espiritu-Santo, G., Xing, W., Salazar, A., Miyamoto, S., Armendarez, V., Volkmuth, W. 2002Comprehensive gene expression analysis by transcript profilingPlant Mol. Biol.487597Google Scholar
  13. Drews, G.N., Bowman, J.L., Meyerowitz, E.M. 1991Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 productCell659911002Google Scholar
  14. Durfee, T., Roe, J.L., Sessions, R.A., Inouye, C., Serikawa, K., Feldmann, K.A., Weigel, D., Zambryski, P.C. 2003The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in ArabidopsisProc. Natl. Acad. Sci. USA10085718576Google Scholar
  15. Everitt, B.S. 1980Cluster Analysis2ndHeineman-Educational Books LtdLondonGoogle Scholar
  16. Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M., Colombo, L. 2003MADS-box protein complexes control carpel and ovule development in ArabidopsisPlant Cell1526032611Google Scholar
  17. Felsenstein, J. 2004. Phylip: Phylogeny Inference Package V 3.6. http://evolution.genetics.washington.edu/phylip.html.Google Scholar
  18. Flanagan, C.A., Ma, H. 1994Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowersPlant Mol. Biol.26581595Google Scholar
  19. Flanagan, C.A., Hu, Y., Ma, H. 1996Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule developmentPlant J.10343353Google Scholar
  20. Franco-Zorrilla, J.M., Cubas, P., Jarillo, J.A., Fernandez-Calvin, B., Salinas, J., Martinez-Zapater, J.M. 2002AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristemsPlant Physiol.128418427Google Scholar
  21. Gentleman, R.C., Carey, V.J., Bates, D.J., Bolstad, B.M., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C.S., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.K., Tierney, L., Yang, Y.H. and Zhang, J. 2004. Bioconductor: Open software development for computational biology and bioinformatics. http://www.bepress.com/bioconductor/paper1/.Google Scholar
  22. Goto, K., Meyerowitz, E. 1994Function and regulation of the Arabidopsis floral homeotic gene PISTILLATAGenes Dev.815481560Google Scholar
  23. Gustafson-Brown, C., Savidge, B., Yanofsky, M.F. 1994Regulation of the Arabidopsis floral homeotic gene APETALA1Cell76131143Google Scholar
  24. Hennig, L., Menges, M., Murray, J.A., Gruissem, W. 2003Arabidopsis transcript profiling on Affymetrix GeneChip arraysPlant Mol. Biol.53457465Google Scholar
  25. Hennig, L., Gruissem, W., Grossniklaus, U., Kohler, C. 2004Transcriptional programs of early reproductive stages in ArabidopsisPlant Physiol.13517651775Google Scholar
  26. Higginson, T., Li, S.F., Parish, R.W. 2003AtMYB103 regulates tapetum and trichome development in Arabidopsis thalianaPlant J.35177192Google Scholar
  27. Huang, H., Tudor, M., Weiss, C.A., Hu, Y., Ma, H. 1995The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding proteinPlant Mol. Biol.28549567Google Scholar
  28. Hughes, T.R., Shoemaker, D.D. 2001DNA microarrays for expression profilingCurr. Opin. Chem. Biol.52125Google Scholar
  29. Ihaka, R., Gentleman, R. 1996R: A language for data analysis and graphics:J. Comput. Graph. Stat.5299314Google Scholar
  30. Ingram, G.C., Goodrich, J., Wilkinson, M.D., Simon, R., Haughn, G.W., Coen, E.S. 1995Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and AntirrhinumPlant Cell715011510Google Scholar
  31. Irizarry,  2003Exploration, normalization, and summaries of high density oligonucleotide array probe level dataBiostatistics4249264Google Scholar
  32. Jack, T., Brockman, L.L., Meyerowitz, E.M. 1992The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamensCell68683697Google Scholar
  33. Jack, T. 2002New members of the floral organ identity AGAMOUS pathwayTrends Plant Sci.7286287Google Scholar
  34. Jofuku, K.D., Boer, B.G., Montagu, M., Okamuro, J.K. 1994Control of Arabidopsis flower and seed development by the homeotic gene APETALA2Plant Cell612111225Google Scholar
  35. Keith, K., Kraml, M., Dengler, N.G., McCourt, P. 1994fusca3: A heterochronic mutation affecting late embryo development in ArabidopsisPlant Cell6589600Google Scholar
  36. Kurup, S., Jones, H.D., Holdsworth, M.J. 2000Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seedsPlant J.21143155Google Scholar
  37. Levin, J.Z., Meyerowitz, E.M. 1995UFO: an Arabidopsis gene involved in both floral meristem and floral organ developmentPlant Cell7529548Google Scholar
  38. Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L., Yanofsky, M.F. 2000SHATTERPROOF MADS-box genes control seed dispersal in ArabidopsisNature404766770Google Scholar
  39. Lönnstedt, I., Speed, T.P. 2002Replicated microarray dataStat/ Sinica123146Google Scholar
  40. Luerssen, H., Kirik, V., Herrmann, P., Misera, S. 1998FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thalianaPlant J.15755764Google Scholar
  41. Ma, H., Yanofsky, M.F., Meyerowitz, E.M. 1990Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thalianaProc. Natl. Acad. Sci. USA8738213825Google Scholar
  42. Ma, H., Yanofsky, M.F., Meyerowitz, E.M. 1991AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genesGenes Dev.5 484495Google Scholar
  43. Ma, H. 1994The unfolding drama of flower development: recent results from genetic and molecular analysesGenes Dev.8745756Google Scholar
  44. Mandel, M.A., Gustafson-Brown, C., Savidge, B., Yanofsky, M.F. 1992Molecular characterization of the Arabidopsis floral homeotic gene APETALA1Nature360273277Google Scholar
  45. Moffatt, B.A., McWhinnie, E.A., Agarwal, S.K., Schaff, D.A. 1994The adenine phosphoribosyltransferase-encoding gene of Arabidopsis thalianaGene143211216Google Scholar
  46. Ni, W., Li, W., Zhang, X., Hu, W., Zhang, W., Wang, G., Han, T., Zahn, L.M., Zhao, D., Ma, H. 2005Genetic control of reproductive development in flowering plantsSharma, R.P. eds. Molecular Plant PhysiologyHaworth PressNew YorkGoogle Scholar
  47. Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J., Ma, H. 2004Regulation of flower development in Arabidopsis by SCF complexesPlant Physiol.13415741585Google Scholar
  48. Nishii, A., Takemura, M., Fujita, H., Shikata, M., Yokota, A., Kohchi, T. 2000Characterization of a novel gene encoding a putative single zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thalianaBiosci. Biotechnol. Biochem.6414021409Google Scholar
  49. Parenicova, L., Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C., Colombo, L. 2003Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS worldPlant Cell1515381551Google Scholar
  50. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F. 2000B and C floral organ identity functions require SEPALLATA MADS-box genesNature405200203Google Scholar
  51. Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E., Yanofsky, M.F. 2003Assessing the redundancy of MADS-box genes during carpel and ovule developmentNature4248588Google Scholar
  52. Redman, J.C., Haas, B.J., Tanimoto, G., Town, C.D. 2004Development and evaluation of an Arabidopsis whole genome Affymetrix probe arrayPlant J.38545561Google Scholar
  53. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., Yu, G. 2000Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotesScience29021052110Google Scholar
  54. Sakai, H., Medrano, L.J., Meyerowitz, E.M. 1995Role of SUPERMAN in maintaining Arabidopsis floral whorl boundariesNature378199203Google Scholar
  55. Salanoubat, M., Lemcke, K., Rieger, M., Ansorge, W., Unseld, M., Fartmann, B., Valle, G., Blocker, H., Perez-Alonso, M., Obermaier, B., Delseny, M., Boutry, M., Grivell, L.A., Mache, R., Puigdomenech, P., Simone, V., Choisne, N., Artiguenave, F., Robert, C., Brottier, P., Wincker, P., Cattolico, L., Weissenbach, J., Saurin, W., Quetier, F., Schafer, M., Muller-Auer, S., Gabel, C., Fuchs, M., Benes, V., Wurmbach, E., Drzonek, H., Erfle, H., Jordan, N., Bangert, S., Wiedelmann, R., Kranz, H., Voss, H., Holland, R., Brandt, P., Nyakatura, G., Vezzi, A., D′Angelo, M., Pallavicini, A., Toppo, S., Simionati, B., Conrad, A., Hornischer, K., Kauer, G., Lohnert, T.H., Nordsiek, G., Reichelt, J., Scharfe, M., Schon, O., Bargues, M., Terol, J., Climent, J., Navarro, P., Collado, C., Perez-Perez, A., Ottenwalder, B., Duchemin, D., Cooke, R., Laudie, M., Berger-Llauro, C., Purnelle, B., Masuy, D., Haan, M., Maarse, A.C., Alcaraz, J.P., Cottet, A., Casacuberta, E., Monfort, A., Argiriou, A., Flores, M., Liguori, R., Vitale, D., Mannhaupt, G., Haase, D., Schoof, H., Rudd, S., Zaccaria, P., Mewes, H.W., Mayer, K.F., Kaul, S., Town, C.D., Koo, H.L., Tallon, L.J., Jenkins, J., Rooney, T., Rizzo, M., Walts, A., Utterback, T., Fujii, C.Y., Shea, T.P., Creasy, T.H., Haas, B., Maiti, R., Wu, D., Peterson, J., Aken, S., Pai, G., Militscher, J., Sellers, P., Gill, J.E., Feldblyum, T.V., Preuss, D., Lin, X., Nierman, W.C., Salzberg, S.L., White, O., Venter, J.C., Fraser, C.M., Kaneko, T., Nakamura, Y., Sato, S., Kato, T., Asamizu, E., Sasamoto, S., Kimura, T., Idesawa, K., Kawashima, K., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Muraki, A., Nakayama, S., Nakazaki, N., Shinpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., Tabata, S. 2000Sequence and analysis of chromosome 3 of the plant Arabidopsis thalianaNature408820822Google Scholar
  56. Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W., Crosby, W.L. 1999The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristemPlant J.20433445Google Scholar
  57. Savidge, B., Rounsley, S.D., Yanofsky, M.F. 1995Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genesPlant Cell7721733Google Scholar
  58. Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D., Lohmann, J.U. 2003Dissection of floral induction pathways using global expression analysisDevelopment13060016012Google Scholar
  59. Smyth, D.R., Bowman, J.L., Meyerowitz, E.M. 1990Early flower development in ArabidopsisPlant Cell2755767Google Scholar
  60. Smyth, G.K. 2004. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statist. Appl. Genet. Mol. Biol. 3: Article 3, http://www.bepress.com/sagmb/vol3/iss1/art3.Google Scholar
  61. Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., Harada, J.J. 2001LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo developmentProc. Natl. Acad. Sci. USA981180611811Google Scholar
  62. Storey, J.D., Tibshirani, R. 2003Statistical significance for genome-wide studiesProc. Natl. Acad. Sci. USA10094409445Google Scholar
  63. Wang, G., Kong, H., Sun, Y., Zhang, X., Zhang, W., Altman, N., DePamphilis, C.W., Ma, H. 2004Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteinsPlant Physiol13510841099Google Scholar
  64. Wang, R., Okamoto, M., Xing, X., Crawford, N.M. 2003Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolismPlant Physiol.132556567Google Scholar
  65. Weigel, D., Meyerowitz, E.M. 1994The ABCs of floral homeotic genesCell78203209Google Scholar
  66. Weiss, C.A., Garnaat, C.W., Mukai, K., Hu, Y., Ma, H. 1994Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1)Proc. Natl. Acad. Sci. USA9195549558Google Scholar
  67. Wellmer, F., Riechmann, J.L., Alves-Ferreira, M., Meyerowitz, E.M. 2004Genome-wide analysis of spatial gene expression in Arabidopsis flowersPlant Cell1613141326Google Scholar
  68. West, M., Yee, K.M., Danao, J., Zimmerman, J.L., Fischer, R.L., Goldberg, R.B., Harada, J.J. 1994LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in ArabidopsisPlant Cell617311745Google Scholar
  69. Wilkinson, M.D., Haughn, G.W. 1995UNUSUAL FLORAL ORGANS controls meristem identity and floral organ primordia fate in ArabidopsisPlant Cell714851499Google Scholar
  70. Yang, M., Hu, Y., Lodhi, M., McCombie, R., Ma, H. 1999The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separationProc. Natl. Acad. Sci. USA961141611421Google Scholar
  71. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., Meyerowitz, E.M. 1990The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factorsNature3463539Google Scholar
  72. Yanofsky, M.F. 1995Floral meristems to floral organs: genes controlling early events in Arabidopsis flower developmentAnnu. Rev. Plant Physiol. Plant Mol. Biol.46167188Google Scholar
  73. Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., dePamphilisa, C. W. and Ma, H. 2005. The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics In pressGoogle Scholar
  74. Zhao, D., Yang, M., Solava, J., Ma, H. 1999The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in ArabidopsisDev. Genet.25209223Google Scholar
  75. Zhao, D., Yu, Q., Chen, M., Ma, H. 2001aThe ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in ArabidopsisDevelopment12827352746Google Scholar
  76. Zhao, D.Z., Yu, Q.L., Chen, C.B. and Ma, H. 2001b. Genetic control of reproductive meristems. In: M.T. McManus and B.E. Veit, (Eds), Meristematic Tissues in Plant Growth and Development. Shefield Academic Press Ltd, pp. 89–141.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Xiaohong Zhang
    • 1
  • Baomin Feng
    • 1
  • Qing Zhang
    • 2
  • Diya Zhang
    • 2
  • Naomi Altman
    • 2
  • Hong Ma
    • 1
  1. 1.Department of Biology and the Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of StatisticsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations