Plant Molecular Biology

, Volume 60, Issue 4, pp 507–518 | Cite as

Characterization of the Snowy Cotyledon 1 Mutant of Arabidopsis Thaliana: The Impact of Chloroplast Elongation Factor G on Chloroplast Development and Plant Vitality

  • Verónica AlbrechtEmail author
  • Anke Ingenfeld
  • Klaus Apel


During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis  thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco).One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.


chloroplast development chloroplast protein biosynthesis snowy cotyledon 1 plant vitality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlert, D., Ruf, S., Bock, R. 2003Plastid protein synthesis is required for plant development in tobaccoProc. Natl. Acad. Sci. U S A1001573015735CrossRefPubMedGoogle Scholar
  2. Akkaya, M.S., Breitenberger, C.A. 1992Light regulation of protein synthesis factor EF-G in pea chloroplastsPlant Mol. Biol.20791800CrossRefPubMedGoogle Scholar
  3. Baba, K., Schmidt, J., Espinosa-Ruiz, A., Villarejo, A., Shiina, T., Gardestrom, P., Sane, A.P., Bhalerao, R.P. 2004Organellar gene transcription and early seedling development are affected in the rpoT;2 mutant of ArabidopsisPlant J.383848CrossRefPubMedGoogle Scholar
  4. Barkan, A. 1993Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolismPlant Cell5 389402CrossRefPubMedGoogle Scholar
  5. Bisanz, C., Begot, L., Carol, P., Perez, P., Bligny, M., Pesey, H., Gallois, J.L., Lerbs-Mache, S., Mache, R. 2003The Arabidopsis nuclear DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast differentiationPlant Mol. Biol.51651663CrossRefPubMedGoogle Scholar
  6. Borowski, C., Rodnina, M.V., Wintermeyer, W. 1996Truncated elongation factor G lacking the G domain promotes translocation of the 3′ end but not of the anticodon domain of peptidyl-tRNAProc. Natl. Acad. Sci. U S A9342024206CrossRefPubMedGoogle Scholar
  7. Chen, M., Choi, Y., Voytas, D.F., Rodermel, S. 2000Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH proteasePlant J.22303313CrossRefPubMedGoogle Scholar
  8. Clough, S.J., Bent, A.F. 1998Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis  thalianaPlant J.16735743CrossRefPubMedGoogle Scholar
  9. Gutensohn, M., Pahnke, S., Kolukisaoglu, U., Schulz, B., Schierhorn, A., Voigt, A., Hust, B., Rollwitz, I., Stockel, J., Geimer, S., Albrecht, V., Flugge, U.I., Klosgen, R.B. 2004Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplastsMol. Genet. Genomics272379396CrossRefPubMedGoogle Scholar
  10. Hajdukiewicz, P., Svab, Z., Maliga, P. 1994The small, versatile pPZP family of Agrobacterium binary vectors for plant transformationPlant Mol. Biol.25989994CrossRefPubMedGoogle Scholar
  11. Harrak, H., Lagrange, T., Bisanz-Seyer, C., Lerbs-Mache, S., Mache, R. 1995The expression of nuclear genes encoding plastid ribosomal proteins precedes the expression of chloroplast genes during early phases of chloroplast developmentPlant Physiol.108685692CrossRefPubMedGoogle Scholar
  12. Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., Quail, P.H. 2004Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesisScience30519371941CrossRefPubMedGoogle Scholar
  13. Ishizaki, Y., Tsunoyama, Y., Hatano, K., Ando, K., Kato, K., Shinmyo, A., Kobori, M., Takeba, G., Nakahira, Y., Shiina, T. 2005A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledonsPlant J.42133144CrossRefPubMedGoogle Scholar
  14. Kim, C., Apel, K. 2004Substrate-dependent and organ-specific chloroplast protein import in plantaPlant Cell168898PubMedGoogle Scholar
  15. Martemyanov, K.A., Gudkov, A.T. 1999Domain IV of elongation factor G from Thermus  thermophilus is strictly required for translocationFEBS Lett.452155159CrossRefPubMedGoogle Scholar
  16. Mohr, D., Wintermeyer, W., Rodnina, M.V. 2000Arginines 29 and 59 of elongation factor G are important for GTP hydrolysis or translocation on the ribosomeEMBO J.1934583464CrossRefPubMedGoogle Scholar
  17. Monte, E., Tepperman, J.M., Al-Sady, B., Kaczorowski, K.A., Alonso, J.M., Ecker, J.R., Li, X., Zhang, Y., Quail, P.H. 2004The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast developmentProc. Natl. Acad. Sci. U S A1011609116098CrossRefPubMedGoogle Scholar
  18. Naested, H., Holm, A., Jenkins, T., Nielsen, H.B., Harris, C.A., Beale, M.H., Andersen, M., Mant, A., Scheller, H., Camara, B., Mattsson, O., Mundy, J. 2004Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell developmentJ. Cell Sci.11748074818CrossRefPubMedGoogle Scholar
  19. Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., Nater, M., Apel, K. 2003Rapid induction of distinct stress responses after the release of singlet oxygen in ArabidopsisPlant Cell15 23202332Google Scholar
  20. Privat, I., Hakimi, M.A., Buhot, L., Favory, J.J., Mache-Lerbs, S. 2003Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3Plant Mol. Biol.51385399CrossRefPubMedGoogle Scholar
  21. Runge, S., Cleve, B., Lebedev, N., Armstrong, G., Apel, K. 1995Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis  thalianaPlanta197490500CrossRefPubMedGoogle Scholar
  22. Sharer, J.D., Koosha, H., Church, W.B., March, P.E. 1999The function of conserved amino acid residues adjacent to the effector domain in elongation factor GProteins37293302CrossRefPubMedGoogle Scholar
  23. Surpin, M., Larkin, R.M., Chory, J. 2002Signal transduction between the chloroplast and the nucleusPlant Cell14S327338PubMedGoogle Scholar
  24. Yamamoto, Y.Y., Puente, P., Deng, X.W. 2000An Arabidopsis cotyledon-specific albino locus: a possible role in 16S rRNA maturationPlant Cell Physiol.416876PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Verónica Albrecht
    • 1
    Email author
  • Anke Ingenfeld
    • 1
  • Klaus Apel
    • 1
  1. 1.Institute of Plant SciencesSwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations